ROSCO toolbox
Release v2.3.0

ROSCO developers

Jun 29, 2021

CONTENTS

Standard Use 3
Technical Documentation 5
Survey 7
Directory 9
4.1 Installing the ROSCO tools 9
4.2 Standard ROSCO Workflow e 12
43 ROSCO TOOIbOX StrUCIUIE v v v v o e s s e 14
4.4 ROSCO Controller Structure v v ot e e e e e e e e e e e e e 17

ROSCO toolbox, Release v2.3.0

NREL’s Reference OpenSource Controller (ROSCO) toolbox for wind turbine applications is a toolbox designed to ease
controller implementation for the wind turbine researcher. The purpose of these documents is to provide information
for the use of the ROSCO related toolchain.

Figure Fig. 1 shows the general workflow for the ROSCO toolchain.

ROSCO | OpenFAST |

Tuning .yaml Toalbox Modal
T | S
F It

DISCON.IN » ROSCO
< J

Fig. 1: ROSCO toolchain general workflow

ROSCO Toolbox
* Generic tuning of NREL’s ROSCO controller
» Simple 1-DOF turbine simulations for quick controller capability verifications
* Parsing of OpenFAST input and output files
* Block diagrams of these capabilities can be seen in architecture.png.
ROSCO Controller
* Fortran based
* Follows Bladed-style control interface

e Modular

CONTENTS 1

ROSCO toolbox, Release v2.3.0

2 CONTENTS

CHAPTER
ONE

STANDARD USE

For the standard use case in OpenFAST, ROSCO will need to be compiled. This is made possible via the instructions
found in Installing the ROSCO tools. Once the controller is compiled, the turbine model needs to point to the compiled
binary. In OpenFAST, this is ensured by changing the DLL_FileName parameter in the ServoDyn input file.

Additionally, an additional input file is needed for the ROSCO controller. Though the controller only needs to be
compiled once, each individual turbine/controller tuning requires an input file. This input file is generically dubbed
“DISCON.IN”. In OpenFAST, the DLL_InFile parameter should be set to point to the desired input file. The ROSCO
toolbox is used to automatically generate the input file. These instructions are provided in the instructions for Standard
ROSCO Workflow.

ROSCO toolbox, Release v2.3.0

4 Chapter 1. Standard Use

CHAPTER
TWO

TECHNICAL DOCUMENTATION

A publication highlighting much of the theory behind the controller tuning and implementation methods can be found
at: https://wes.copernicus.org/preprints/wes-2021-19/

https://wes.copernicus.org/preprints/wes-2021-19/

ROSCO toolbox, Release v2.3.0

6 Chapter 2. Technical Documentation

CHAPTER
THREE

SURVEY

Please help us better understand the ROSCO user-base and how we can improve ROSCO through this brief survey:

ROSCO toolbox, Release v2.3.0

8 Chapter 3. Survey

CHAPTER
FOUR

DIRECTORY

4.1 Installing the ROSCO tools

Depending on what is needed, a user can choose to use just the ROSCO controller or to use both the ROSCO controller
and the toolbox. Both the controller and the toolbox should be installed if one wishes to leverage the full ROSCO
toolchain.

For users who wish to use the ROSCO toolbox (with or without the controller), please skip to the section on section
ROSCO Toolbox Structure. For users planning to only download and compile the ROSCO controller, please follow
the instructions on ROSCO controller. For information on best practices to update to the most recent version of the
ROSCO toolbox, see Updating the ROSCO Toolbox.

4.1.1 ROSCO controller

The standard ROSCO controller is based in Fortran and must be compiled; this code can be found at: https://github.
com/NREL/ROSCO. Of course, the advanced user can compile the downloaded code using their own desired methods
(e.g. Visual Studio). Otherwise, a few of the more common compiling methods are detailed on this page. Additionally,
the most recent tagged version releases are available for download.

If one wishes to download the code via the command line, we provide two supported options in the subsections below.
For non-developers (those not interested in modifying the source code), the a 64-bit version of the compiled controller
can be downloaded via Anaconda. For users needing a 32-bit version on Windows and/or developers, CMake can be
used to compile the Fortran code.

Anaconda download for non-developers

For users familiar with Anaconda, a 64-bit version of ROSCO is available through the conda-forge channel. In or-
der to download the most recently compiled version release, from an anaconda powershell (Windows) or terminal
(Mac/Linux) window, create a new anaconda virtual environment:

conda config --add channels conda-forge
conda create -y --name rosco-env python=3.8
conda activate rosco-env

navigate to your desired folder to save the compiled binary using:

cd <my_desired_folder>

and download the controller:

https://github.com/NREL/ROSCO
https://github.com/NREL/ROSCO
https://github.com/NREL/ROSCO/tags
https://www.anaconda.com/

ROSCO toolbox, Release v2.3.0

conda install -y ROSCO

This will download a compiled ROSCO binary file into the default filepath for any dynamic libraries downloaded via
anaconda while in the ROSCO-env. The ROSCO binary file can be copied to your desired folder using:

cp $CONDA_PREFIX/lib/libdiscon.* .

on linux or:

copy %CONDA_PREFIX%/lib/libdiscon.* .

on Windows.

CMake for developers (Mac/linux)

CMake provides a straightforward option for many users, particularly those on a Mac or Linux. On Mac/Linux, ROSCO
can be compiled by first cloning the source code from git using:

git clone https://github.com/NREL/ROSCO.git

And then compiling using CMake:

cd ROSCO
mkdir build
cd build
cmake ..
make install

This will generate a file called 1ibdiscon.so (Linux) or libdiscon.dylib (Mac) in the /ROSCO/install/lib
directory.

CMake for developers/32-bit (Windows)

To compile ROSCO on Windows, you first need a Fortran compiler. If you need a 32-bit DLL, then we recommend
installing MinGW (Section 2). If you require a 64-bit version, you can install the MSYS2 toolchain through conda:

conda install m2w64-toolchain libpython

Note that if you have the 64-bit toolchain installed in your environment, you might have conflicts with the 32-bit
compiler. We recommend therefore keeping separate environments if you want to compile 32- or 64-bit.

Once you have your Fortran compiler successfully installed and configured, the build process is similar to on Mac and
linux:

cd ROSCO

mkdir build

cd build

cmake .. -G "MinGW Makefiles"

mingw32-make

Note that the mingw32-make command is (confusingly) valid for both 64-bit and 32-bit MinGW.
This will generate a file called 1ibdiscon.d1l in the /ROSCO/install/1ib directory.

10 Chapter 4. Directory

https://cmake.org/
http://capsis.cirad.fr/capsis/documentation/mingw-installation

ROSCO toolbox, Release v2.3.0

4.1.2 Full ROSCO toolbox

We recommend using the full ROSCO toolbox so that you can leverage the entire toolchain.

Installing

Installation of the complete ROSCO toolbox is made easy through Anaconda. If you do not already have Anaconda
installed on your machine, please install it.

Then please follow the following steps:

1. Create a conda environment for ROSCO

conda config --add channels conda-forge
conda create -y --name rosco-env python=3.8
conda activate rosco-env

2. Install WISDEM

conda install -y wisdem

You should then do step three or four. If you do not want to compile the ROSCO controller within the installation of
the ROSCO toolbox, please follow the instructions for compiling_rosco.

3. Clone and Install the ROSCO toolbox with ROSCO

git clone https://github.com/NREL/ROSCO_toolbox.git

cd ROSCO_toolbox

git submodule init

git submodule update

conda install compilers # (Mac/Linux only)
conda install m2w64-toolchain libpython # (Windows only)

python setup.py install --compile-rosco

4. Clone and Install the ROSCO toolbox without ROSCO

git clone https://github.com/NREL/ROSCO_toolbox.git
cd ROSCO_toolbox
python setup.py install

Alternatively...

If you wish to write your own scripts to leverage the ROSCO toolbox tools, but do not necessarily need the source code
or to run any of the examples, the ROSCO toolbox is available via PyPi:

pip install rosco_toolbox

Note that if you do choose to install the ROSCO Toolbox this way, you will not have the source code. Additionally, you
will need to download WISDEM and the ROSCO controller separately if you wish to use any of the ROSCO toolbox
functionalities that need those software packages.

4.1. Installing the ROSCO tools 11

https://www.anaconda.com/

ROSCO toolbox, Release v2.3.0

Updating the ROSCO Toolbox

Simple git commands should update the toolbox and controller as development continues: ~ git pull git
submodule update " and then recompile and reinstall as necessary. ..

Getting Started

Please see a the Standard ROSCO Workflow for several example scripts using ROSCO and the ROSCO_toolbox.

4.2 Standard ROSCO Workflow

This page outlines methods for reading turbine models, generating the control parameters of a DISCON.IN: file,
and running aeroelastic simulations to test controllers. A set of example scripts demonstrate the functionality of
ROSCO_toolbox and ROSCO controller.

4.2.1 Reading Turbine Models

Control parameters depend on the turbine model. The ROSCO_toolbox uses OpenFAST inputs and an additional .
yaml formatted file to set up a turbine object in python. Several OpenFAST inputs are located in Test_Cases/. The
controller tuning .yaml are located in Tune_Cases/. A detailed description of the ROSCO control inputs and tuning
.yaml are provided in The DISCON.IN file and The ROSCO Toolbox Tuning File, respectively.

e example_01.py loads an OpenFAST turbine model and displays a summary of its information
* example_02.py plots the C}, surface of a turbine

ROSCO requires the power and thrust coefficients for tuning control inputs and running the extended Kalman filter
wind speed estimator.

* example_03.py runs cc-blade, a blade element momentum solver from WISDEM, to generate a C,, surface.

The Cp_Cq_Ct.txt (or similar) file contains the rotor performance tables that are necessary to run the ROSCO con-
troller. This file can be located wherever you desire, just be sure to point to it properly with the PerfFileName
parameter in DISCON. IN.

4.2.2 Tuning Controllers and Generating DISCON.IN

The ROSCO turbine object, which contains turbine information required for controller tuning, along with control
parameters in the tuning yaml and the C), surface are used to generate control parameters and DISCON. IN files. To tune
the PI gains of the torque control, set omega_vs and zeta_vs in the yaml. Similarly, set omega_pc and zeta_pc to
tune the PI pitch controller; gain scheduling is automatically handled using turbine information. Generally omega_*
increases the responsiveness of the controller, reducing generator speed variations, but an also increases loading on
the turbine. zeta_* changes the damping of the controller and is generally less important of a tuning parameter, but
could also help with loading. The default parameters in Tune_Cases/ are known to work well with the turbines in this
repository.

* example_04.py loads a turbine and tunes the PI control gains
* example_05.py tunes a controller and runs a simple simualtion (not using OpenFAST)

* example_06.py loads a turbine, tunes a controller, and runs an OpenFAST simulation

12 Chapter 4. Directory

https://github.com/NREL/ROSCO_toolbox/tree/main/Examples
https://github.com/NREL/ROSCO_toolbox/tree/main/Test_Cases
https://github.com/NREL/ROSCO_toolbox/tree/main/Tune_Cases
https://github.com/NREL/ROSCO_toolbox/tree/main/Tune_Cases

ROSCO toolbox, Release v2.3.0

Each of these examples generates a DISCON. IN file, which is an input to libdiscon.*. When running the controller in
OpenFAST, DISCON. IN must be appropriately named using the DLL_FileName parameter in ServoDyn.

OpenFAST can be installed from source or in a conda environment using:

conda install -c conda-forge openfast

ROSCO can implement peak shaving (or thrust clipping) by changing the minimum pitch angle based on the estimated
wind speed:

* example_07.py loads a turbine and tunes a controller with peak shaving.

By setting the ps_percent value in the tuning yaml, the minimum pitch versus wind speed table changes and is updated
in the DISCON. IN file.

ROSCO also contains a method for distributed aerodynamic control (e.g., via trailing edge flaps):

* example_10.py tunes a controller for distributed aerodynamic control

4.2.3 Running OpenFAST Simulations

To run an aeroelastic simulation with ROSCO, the ROSCO input (DISCON.IN) must point to a properly formatted
Cp_Cq_Ct. txt file using the PerfFileName parameter. If called from OpenFAST, the main OpenFAST input points
to the ServoDyn input, which points to the DISCON. IN file and the 1ibdiscon. * dynamic library.

For example in Test_Cases/NREL-5MW:
e NREL-5MW. fst has "NRELOffshrBsline5MW_Onshore_ServoDyn.dat" as the ServoFile input

e NRELOffshrBsline5MW_Onshore_ServoDyn.dat has "../../R0OSCO/build/libdiscon.dylib" as the
DLL_FileName input and "DISCON.IN" as the DLL_InFile input. Note that these file paths are relative to
the path of the main fast input (NREL-5MW. fst)

e DISCON.IN has "Cp_Ct_Cq.NREL5MW.txt" as the PerfFileName input

The ROSCO_toolbox has methods for running OpenFAST (and other) binary executables using system calls, as well
as post-processing tools in of Tools/.

Several example scripts are set up to quickly simulate ROSCO with OpenFAST:
* example_06.py loads a turbine, tunes a controller, and runs an OpenFAST simulation
* example_08.py loads the OpenFAST output files and plots the results

e example_09.py runs TurbSim, for generating turbulent wind inputs

4.2.4 Testing ROSCO

The ROSCO_toolbox also contains tools for testing ROSCO in IEC design load cases (DLCs), located in
ROSCO_testing/. The script run_Testing.py allows the user to set up their own set of tests. By setting testtype,
the user can run a variety of tests:

e lite, which runs DLC 1.1 simulations at 5 wind speed from cut-in to cut-out, in 330 second simulations

* heavy, which runs DLC 1.3 from cut-in to cut-out in 2 m/s steps and 2 seeds for each, in 630 seconds, as well
as DLC 1.4 simulations

* binary-comp, where the user can compare 1ibdiscon. * dynamic libraries (compiled ROSCO source code),
with either a lite or heavy set of simulations

4.2. Standard ROSCO Workflow 13

https://github.com/OpenFAST/openfast
https://github.com/NREL/ROSCO_toolbox/tree/develop/ROSCO_toolbox/ofTools
https://github.com/NREL/ROSCO_toolbox/tree/develop/ROSCO_testing

ROSCO toolbox, Release v2.3.0

¢ discon-comp, where the user can compare DISCON. IN controller tunings (and the complied ROSCO source is
constant)

Setting the turbine2test allows the user to test either the IEA-15MW with the UMaine floating semisubmersible or
the NREL-5MW reference onshore turbine.

4.3 ROSCO Toolbox Structure

Here, we give an overview of the structure of the ROSCO toolbox and how the code is implemented.

4.3.1 File Structure

The primary tools of the ROSCO toolbox are separated into several folders. They include the following:

ROSCO_toolbox

The source code for the ROSCO toolbox generic tuning implementations lives here.
e turbine.py loads a wind turbine model from OpenFAST input files.
* controller.py contains the generic controller tuning scripts
e utilities.py has most of the input/output file management scripts
e control_interface.py enables a python interface to the ROSCO controller
* sim.py is a simple 1-DOF model simulator

* ofTools is a folder containing a large set of tools to handle OpenFAST input files - this is primarily used to run
large simulation sets and to handle reading and processing of OpenFAST input and output files.

Examples

A number of examples are included to showcase the numerous capabilities of the ROSCO toolbox; they are described
in the Standard ROSCO Workflow.

Matlab_Toolbox

A simulink implementation of the ROSCO controller is included in the Matlab Toolbox. Some requisite MATLAB
utility scripts are also included.

ROSCO _testing

Testing scripts for the ROSCO toolbox are held here and showcased with run_testing.py. These can be used to
compare different controller tunings or different controllers all together.

14 Chapter 4. Directory

https://github.com/openfast/openfast
https://github.com/openfast/openfast

ROSCO toolbox, Release v2.3.0

Test_Cases

Example OpenFAST models consistent with the latest release of OpenFAST are provided here for simple testing and
simulation cases.

Tune_Cases

Some example tuning scripts and tuning input files are provided here. The code found in tune_ROSCO.py can be
modified by the user to easily enable tuning of their own wind turbine model.

4.3.2 The ROSCO Toolbox Tuning File

A yaml formatted input file is used for the standard ROSCO toolbox tuning process. This file contains the necessary
inputs for the ROSCO toolbox to load an OpenFAST input file deck and tune the ROSCO controller. It contains the
following inputs:

Table 4.1: ROSCO toolbox input yaml

Primary Sec- | Variable Re- Type Description

tion quired

path_params | FAST_InputFilléYes String Name of the primary (*.fst) OpenFAST input file
FAST_directoryYes String Main OpenFAST model directory, where the * fst lives
rotor_performdee_£ilpiniag Filename for rotor performance text file. If this is not

specified, and an existing rotor performance file cannot
be found, cc-blade will be run

turbine_paramsotor_interia Yes Float Rotor inertia [kg m”2], (Available in Elastodyn .sum
file)
rated_rotor_spéesd Float Rated rotor speed of the turbine [rad/s]
v_min Yes Float Cut-in wind speed [m/s]
v_max Yes Float Cut-out wind speed [m/s]
max_pitch_ratéYes Float Maximum blade pitch rate [rad/s]
max_torque_ratées Float Maximum generator torque rate [Nm/s]
rated_power | Yes Float Rated Power [W].
bld_edgewise| fifasq Float Blade edgewise first natural frequency [rad/s]. Set this

even if you are using stiff blades. It becomes the gener-
ator speed LPF bandwidth.

TSR_operationdNo Float Desired below-rated operation tip speed ratio [-]. If this
is not specified, the Cp-maximizing TSR from the Cp
surface is used.

twr_freq No Float Tower first fore-aft natural frequency [rad/s]. Required
for floating wind turbine control.
ptfm_freq No Float Platform first fore-aft natural frequency [rad/s]. Re-
quired for floating wind turbine control.
controller_pataggingLevel| Yes Int 0: write no debug files, 1: write standard output .dbg-

file, 2: write standard output .dbg-file and complete
avrSWAP-array .dbg2-file

F_LPFType Yes Int Type of Low pass filter for the generator speed feedback
signal [rad/s]. 1: first-order low-pass filter, 2: second-
order low-pass filter.

continues on next page

4.3. ROSCO Toolbox Structure 15

https://yaml.org/

ROSCO toolbox, Release v2.3.0

Table 4.1 — continued from previous page

Primary Sec- | Variable Re- Type Description
tion quired

F_NotchType | Yes Int Notch filter on generator speed and/or tower fore-aft mo-
tion, used for floating wind turbine control. O: disable,
1: generator speed, 2: tower-top fore-aft motion, 3: gen-
erator speed and tower-top fore-aft motion

IPC_ControlMpdées Int Turn Individual Pitch Control (IPC) for fatigue load re-
ductions (pitch contribution). O: off, 1: 1P reductions,
2: 1P+2P reductions.

VS_ControlModéYes Int Generator torque control mode. 0: kw? below rated,
constant torque above rated, 1: kw? below rated, con-
stant power above rated, 2: TSR tracking PI control be-
low rated, constant torque above rated, 3: TSR tracking
PI control below rated, constant power above rated.

PC_ControlModéYes Int Blade pitch control mode. 0: No pitch control, fix to fine
pitch, 1: active PI blade pitch control

Y_ControlMode Yes Int Yaw control mode. 0: no yaw control, 1: yaw rate con-
trol, 2: yaw-by-IPC

SS_Mode Yes Int Setpoint Smoother mode. 0: no set point smoothing, 1:
set point smoothing

WE_Mode Yes Int Wind speed estimator mode. 0: One-second low pass
filtered hub height wind speed, 1: Immersion and In-
variance Estimator (Ortega et al.), 2: Extended Kalman
filter

PS_Mode Yes Int Pitch saturation mode. 0: no pitch saturation, 1: peak
shaving, 2: Cp-maximizing pitch saturation, 3: peak
shaving and Cp-maximizing pitch saturation

SD_Mode Yes Int Shutdown mode. 0: no shutdown procedure, 1: pitch to
max pitch at shutdown.

F1_Mode Yes Int Floating feedback mode. 0: no nacelle rotational veloc-
ity feedback, 1: nacelle rotational velocity feedback

Flp_Mode Yes Int Flap control mode. 0: no flap control, 1: steady state
flap angle, 2: Proportional flap control

zeta_pc Yes Float Pitch controller desired damping ratio [-]

omega_pc Yes Float Pitch controller desired natural frequency [rad/s]

zeta_vs Yes Float Torque controller desired damping ratio [-]

omega_vs Yes Float Torque controller desired natural frequency [rad/s]

zeta_flp No Float Flap controller desired damping ratio [-]. Required if
Flp_Mode>0

omega_flp No Float Flap controller desired natural frequency [rad/s]. Re-
quired if F1p_Mode>0

max_pitch No Float Maximum blade pitch angle [rad]. Default is 1.57 rad
(90 degrees).

min_pitch No Float Minimum blade pitch angle [rad]. Default is 0 degrees.

vs_minspd No Float Minimum rotor speed [rad/s]. Default is O rad/s.

ss_cornerfreq No Float First order low-pass filter cornering frequency for set-
point smoother [rad/s]. Default is .6283 rad/s.

ss_vsgain No Float Torque controller set point smoother gain bias percent-
age [< 1]. Default is 1.

ss_pcgain No Float Pitch controller set point smoother gain bias percentage
[< 1]. Default is 0.001.

continues on next page
16 Chapter 4. Directory

ROSCO toolbox, Release v2.3.0

Table 4.1 — continued from previous page

Primary Sec- | Variable Re- Type Description
tion quired
ps_percent No Float Percent peak shaving [< 1]. Default is 0.8.
sd_maxpit No Float Maximum blade pitch angle to initiate shutdown [rad].
Default is the blade pitch angle at v_max.
sd_cornerfreq No Float Cutoff Frequency for first order low-pass filter for blade
pitch angle [rad/s]. Default is 0.41888 rad/s.
flp_maxpit No Float Maximum (and minimum) flap pitch angle [rad]. De-

fault is 0.1745 rad (10 degrees).

4.4 ROSCO Controller Structure

Here, we give an overview of the structure of the ROSCO controller and how the code is implemented.

4.4.1 File Structure

The primary functions of the ROSCO toolbox are separated into several files. They include the following:

* DISCON. 90 is the primary driver function.

* ReadSetParameters.f90 primarily handles file I/O and the Bladed Interface.

e ROSCO_Types. £90 allocates variables in memory.

* Constants. £90 establishes some global constants.

* Controllers. 90 contains the primary controller algorithms (e.g. blade pitch control)

e ControllerBlocks.f90 contains additional control features that are not necessarily primary controllers (e.g.
wind speed estimator)

e Filters.f90 contains the various filter implementations.

e Functions. f90 contains various functions used in the controller.

4.4.2 The DISCON.IN file

A standard file structure is used as an input to the ROSCO controller. This is, generically, dubbed the DISCONL.IN file,
though it can be renamed (In OpenFAST, this file is pointed to by DLL_InFile in the ServoDyn file. Examples of the
DISCONL.IN file are found in each of the Test Cases in the ROSCO toolbox, and in the parameter_files folder of

ROSCO.
Table 4.2: DISCON.IN
Pri- Vari- Type Description
mary able
Section
DE- LoggingLelml 0: write no debug files, 1: write standard output .dbg-file, 2: write standard
BUG output .dbg-file and complete aviSWAP-array .dbg2-file

continues on next page

4.4. ROSCO Controller Structure

17

https://github.com/openfast/openfast

ROSCO toolbox, Release v2.3.0

Table 4.2 — continued from previous page

Pri- Vari- Type Description

mary able

Section

CON- F_LPFTypelnt Filter type for generator speed feedback signal. 1: first-order low-pass filter, 2:
TROLLER second-order low-pass filter.

FLAGS

F_NotchTyhw Notch filter on the measured generator speed and/or tower fore-aft motion (used
for floating). 0: disable, 1: generator speed, 2: tower-top fore-aft motion, 3:
generator speed and tower-top fore-aft motion.

IPC_ContrhitMode | Individual Pitch Control (IPC) type for fatigue load reductions (pitch contribu-
tion). O: off, 1: 1P reductions, 2: 1P+2P reductions.

VS_Controlifode Generator torque control mode type. 0: kw? below rated, constant torque above
rated, 1: kw? below rated, constant power above rated, 2: TSR tracking PI con-
trol below rated, constant torque above rated, 3: TSR tracking PI control below
rated, constant torque above rated

PC_Contxyolifode Blade pitch control mode. 0: No pitch, fix to fine pitch, 1: active PI blade pitch
control.

Y_ContrqlMude Yaw control mode. 0: no yaw control, 1: yaw rate control, 2: yaw-by-IPC.

SS_Mode | Int Setpoint Smoother mode. 0: no set point smoothing, 1: use set point smoothing.

WE_Mode | Int Wind speed estimator mode. 0: One-second low pass filtered hub height wind
speed, 1: Immersion and Invariance Estimator, 2: Extended Kalman Filter.

PS_Mode | Int Pitch saturation mode. 0: no pitch saturation, 1: implement pitch saturation

SD_Mode | Int Shutdown mode. 0: no shutdown procedure, 1: shutdown triggered by max
blade pitch.

F1_Mode | Int Floating feedback mode. 0: no nacelle velocity feedback, 1: nacelle velocity
feedback (parallel compensation).

Flp_Mode Int Flap control mode. 0: no flap control, 1: steady state flap angle, 2: PI flap
control.

FIL- F_LPFCoxnEk¥teq | Corner frequency (-3dB point) in the generator speed low-pass filter, [rad/s]
TERS

F_LPFDampKkhgt Damping coefficient in the generator speed low-pass filter, [-]. Only used only
when F_FilterType = 2

F_Notch(QoFhexFreq Natural frequency of the notch filter, [rad/s]

F_NotchBeFh¥tmDen Notch damping values of numerator and denominator - determines the width and

Float depth of the notch, [-]

F_SSCorneFkmtq Corner frequency (-3dB point) in the first order low pass . filter for the set point
smoother, [rad/s].

F_FlCorneFkmeq Corner frequency and damping ratio for the second order low pass filter of the

Float tower-top fore-aft motion for floating feedback control [rad/s, -].

F_FlpCoxnEk¥teq | Corner frequency and damping ratio in the second order low pass filter of the

Float blade root bending moment for flap control [rad/s, -].
BLADE | PC_GS_n | Int Number of gain-scheduling table entries
PITCH
CON-
TROL
PC_GS_angFkmt Gain-schedule table: pitch angles [rad].
array,
length =
PC_GS_n
continues on next page
18 Chapter 4. Directory

ROSCO toolbox, Release v2.3.0

Table 4.2 — continued from previous page

Pri- Vari- Type Description
mary able
Section
PC_GS_KR Float Gain-schedule table: pitch controller proportional gains [s].
array,
length =
PC_GS_n
PC_GS_K1I Float Gain-schedule table: pitch controller integral gains [-].
array,
length =
PC_GS_n
PC_GS_KD Float Gain-schedule table: pitch controller derivative gains [s2]. Currently unused!
array,
length =
PC_GS_n
PC_GS_TH Float Gain-schedule table: transfer function gains [s?]. Currently unused!
array,
length =
PC_GS_n
PC_MaxPitFloat Maximum physical pitch limit, [rad].
PC_MinPiltFloat Minimum physical pitch limit, [rad].
PC_MaxRgtFloat Maximum pitch rate (in absolute value) of pitch controller, [rad/s].
PC_MinRgtFloat Minimum pitch rate (in absolute value) in pitch controller, [rad/s].
PC_RefSpdFloat Desired (reference) HSS speed for pitch controller, [rad/s].
PC_FineRiFloat Below-rated pitch angle set-point, [rad]
PC_SwitghFloat Angle above lowest PC_MinPit to switch to above rated torque control, [rad].
Used for :code:"VS_ControlMode"=0,1.
INDI- IPC_IntSaFloat Integrator saturation point (maximum signal amplitude contribution to pitch
VID- from IPC), [rad]
UAL
PITCH
CON-
TROL
IPC_KI | Float Integral gain for the individual pitch controller: first parameter for 1P reductions,
Float second for 2P reductions, [-, -].
IPC_aziQfFket Phase offset added to the azimuth angle for the individual pitch controller: first
Float parameter for 1P reductions, second for 2P reductions, [rad].
IPC_CorneFkeegAct Corner frequency of the first-order actuators model, used to induce a phase lag
in the IPC signal [rad/s]. 0: Disable.
VS VS_GenEffFloat Generator efficiency from mechanical power -> electrical power, [should match
TORQUE the efficiency defined in the generator properties!], [%]
CON-
TROL
VS_ArSatTHloat Above rated generator torque PI control saturation limit, [Nm].
VS_MaxRgtFloat Maximum generator torque rate (in absolute value) [Nm/s].
VS_MaxTq Float Maximum generator torque (HSS), [Nm].
VS_MinTq Float Minimum generator torque (HSS) [Nm].
VS_MinOVMSptbat Cut-in speed towards optimal mode gain path, [rad/s]. Used if
VS_ControlMode = 0,1.
VS_Rgn2K Float Generator torque constant in Region 2 (HSS side), [N-m/(rad/s)*2]. Used if
VS_ControlMode = 0,1.

continues on next page

4.4. ROSCO Controller Structure 19

ROSCO toolbox, Release v2.3.0

Table 4.2 — continued from previous page

Pri- Vari- Type Description
mary able
Section

VS_RtPwn Float Rated power [W]

VS_RtTq | Float Rated torque, [Nm].

VS_RefSpdFloat Rated generator speed used by torque controller [rad/s].

VS_n Int Number of generator PI torque controller gains. Only 1 is currently supported.

VS_KP Float Proportional gain for generator PI torque controller [1/(rad/s) Nm]. (Used
in the transition 2.5 region if VS_ControlMode = 0,1. Always used if
VS_ControlMode = 2,3)

VS_KI Float Integral gain for generator PI torque controller [1/rad Nm]. (Only used
in the transition 2.5 region if VS_ControlMode = 0,1. Always used if
VS_ControlMode = 2,3)

VS_TSRoptFloat Region 2 tip-speed-ratio [rad]. Generally, the power maximizing TSR. Can use
non-optimal TSR for low axial induction rotors.

SET- SS_VSGainFloat Variable speed torque controller setpoint smoother gain, [-].
POINT
SMOOTHER
SS_PCGainFloat Collective pitch controller setpoint smoother gain, [-].
WIND WE_BladeREtHans Blade length (distance from hub center to blade tip), [m]
SPEED
ESTI-
MA-
TOR
WE_CP_n | Int Number of parameters in the Cp array
WE_CP Float Parameters that define the parameterized CP(lambda) function
Float
Float
Float

WE_Gammg Float Adaption gain for the I1&I wind speed estimator algorithm [m/rad]

WE_GearhokRatio | Gearbox ratio [>=1], [-]

WE_Jtot | Float Total drivetrain inertia, including blades, hub and casted generator inertia to
LSS, [kg m"2]

WE_RhoAirFloat Air density, [kg m”-3]

PerfFileNStwéng File containing rotor performance tables (Cp,Ct,Cq)

PerfTableRitdat Size of rotor performance tables in PerfFileName, first number refers to num-
ber of blade pitch angles (num columns), second number refers to number of
tip-speed ratios (num rows)

WE_FOPolemtN Number of first-order system poles used in the Extended Kalman Filter

WE_FOPoleKEloat Wind speeds for first-order system poles lookup table [m/s]

array,
length =
WE_FOPolles_N
WE_FOPoleKloat First order system poles [1/s]
array,
length =
WE_FOPolles_N
YAW Y_ErrThreEat Yaw error threshold. Turbine begins to yaw when it passes this. [rad"2 s]
CON-
TROL
continues on next page
20 Chapter 4. Directory

ROSCO toolbox, Release v2.3.0

Table 4.2 — continued from previous page

Pri- Vari- Type Description
mary able
Section
Y_TIPC_IntBhoat Integrator saturation (maximum signal amplitude contribution to pitch from
yaw-by-IPC), [rad]
Y_IPC_n | Int Number of controller gains for yaw-by-IPC
Y_IPC_KE Float Yaw-by-IPC proportional controller gains Kp [s]
array,
length =
Y_IPC_n
Y_TIPC_KI Float Yaw-by-IPC integral controller gain Ki [-]
array,
length =
Y_IPC_n
Y_TIPC_omebhi®R Low-pass filter corner frequency for the Yaw-by-IPC controller to filtering the
yaw alignment error, [rad/s].
Y_IPC_zetHIdat Low-pass filter damping factor for the Yaw-by-IPC controller to filtering the yaw
alignment error, [-].
Y_MErrSetFloat Yaw alignment error set point, [rad].
Y_omegallPFhsit Corner frequency fast low pass filter, [rad/s].
Y_omegaliPElaaw Corner frequency slow low pass filter, [rad/s].
Y_Rate | Float Yaw rate, [rad/s].
TOWER | FA_KI Float Integral gain for the fore-aft tower damper controller [rad*s/m]. -1 = off
FORE-
AFT
DAMP-
ING
FA_HPF_(oFhexFreq Corner frequency (-3dB point) in the high-pass filter on the fore-aft acceleration
signal [rad/s]
FA_IntSatFloat Integrator saturation (maximum signal amplitude contribution to pitch from FA
damper), [rad]
MINI- PS_B1dPithitMin_N | Number of values in minimum blade pitch lookup table.
MUM
PITCH
SAT-
URA-
TION
PS_WindSpEkuds Wind speeds corresponding to minimum blade pitch angles [m/s]
array,
length =
PS_B1dPitchMin_n
PS_B1dPitEh#in Minimum blade pitch angles [rad]
array,
length =
PS_B1dPitchMin_n
SHUT- | SD_MaxPitFloat Maximum blade pitch angle to initiate shutdown, [rad]
DOWN
SD_CornerFioeq Cutoff Frequency for first order low-pass filter for blade pitch angle, [rad/s]
FLOAT- | F1_Kp Float Nacelle velocity proportional feedback gain [s]
ING

continues on next page

4.4. ROSCO Controller Structure 21

ROSCO toolbox, Release v2.3.0

Table 4.2 — continued from previous page

Pri- Vari- Type Description

mary able

Section

FLAP Flp_AngleFloat Initial or steady state flap angle [rad]

ACTU-

ATION
Flp_Kp | Float Trailing edge flap control proportional gain [s]
Flp_Ki | Float Trailing edge flap control integral gain [s]
Flp_MaxRiFloat Maximum (and minimum) flap angle [rad]

License Copyright 2020 NREL

Licensed under the Apache License, Version 2.0 (the “License”); you may not use this file except in compliance with
the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

22 Chapter 4. Directory

http://www.apache.org/licenses/LICENSE-2.0

	Standard Use
	Technical Documentation
	Survey
	Directory
	Installing the ROSCO tools
	ROSCO controller
	Anaconda download for non-developers
	CMake for developers (Mac/linux)
	CMake for developers/32-bit (Windows)

	Full ROSCO toolbox
	Installing
	Updating the ROSCO Toolbox
	Getting Started

	Standard ROSCO Workflow
	Reading Turbine Models
	Tuning Controllers and Generating DISCON.IN
	Running OpenFAST Simulations
	Testing ROSCO

	ROSCO Toolbox Structure
	File Structure
	ROSCO_toolbox
	Examples
	Matlab_Toolbox
	ROSCO_testing
	Test_Cases
	Tune_Cases

	The ROSCO Toolbox Tuning File

	ROSCO Controller Structure
	File Structure
	The DISCON.IN file

