ROSCO toolbox

Release v2.3.0

ROSCO developers

CONTENTS

1	Standard Use	
2	Technical Documentation	
3	Survey	
4	Directory	
	Installing the ROSCO tools	
	4.2 Standard ROSCO Workflow	
	4.3 ROSCO Toolbox Structure	
	4.4 ROSCO Controller Structure	

NREL's Reference OpenSource Controller (ROSCO) toolbox for wind turbine applications is a toolbox designed to ease controller implementation for the wind turbine researcher. The purpose of these documents is to provide information for the use of the ROSCO related toolchain.

Figure Fig. 1 shows the general workflow for the ROSCO toolchain.

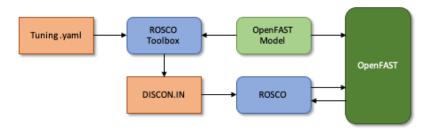


Fig. 1: ROSCO toolchain general workflow

ROSCO Toolbox

- Generic tuning of NREL's ROSCO controller
- Simple 1-DOF turbine simulations for quick controller capability verifications
- Parsing of OpenFAST input and output files
- Block diagrams of these capabilities can be seen in architecture.png.

ROSCO Controller

- · Fortran based
- Follows Bladed-style control interface
- Modular

CONTENTS 1

2 CONTENTS

CHAPTER

ONE

STANDARD USE

For the standard use case in OpenFAST, ROSCO will need to be compiled. This is made possible via the instructions found in *Installing the ROSCO tools*. Once the controller is compiled, the turbine model needs to point to the compiled binary. In OpenFAST, this is ensured by changing the DLL_FileName parameter in the ServoDyn input file.

Additionally, an additional input file is needed for the ROSCO controller. Though the controller only needs to be compiled once, each individual turbine/controller tuning requires an input file. This input file is generically dubbed "DISCON.IN". In OpenFAST, the DLL_InFile parameter should be set to point to the desired input file. The ROSCO toolbox is used to automatically generate the input file. These instructions are provided in the instructions for *Standard ROSCO Workflow*.

CHAPTER	
TWO	

TECHNICAL DOCUMENTATION

A publication highlighting much of the theory behind the controller tuning and implementation methods can be found at: https://wes.copernicus.org/preprints/wes-2021-19/

CHAPTER
THREE

SURVEY

Please help us better understand the ROSCO user-base and how we can improve ROSCO through this brief survey:

8 Chapter 3. Survey

CHAPTER

FOUR

DIRECTORY

4.1 Installing the ROSCO tools

Depending on what is needed, a user can choose to use just the ROSCO controller or to use both the ROSCO controller and the toolbox. Both the controller and the toolbox should be installed if one wishes to leverage the full ROSCO toolchain.

For users who wish to use the ROSCO toolbox (with or without the controller), please skip to the section on section *ROSCO Toolbox Structure*. For users planning to only download and compile the ROSCO controller, please follow the instructions on *ROSCO controller*. For information on best practices to update to the most recent version of the ROSCO toolbox, see *Updating the ROSCO Toolbox*.

4.1.1 ROSCO controller

The standard ROSCO controller is based in Fortran and must be compiled; this code can be found at: https://github.com/NREL/ROSCO. Of course, the advanced user can compile the downloaded code using their own desired methods (e.g. Visual Studio). Otherwise, a few of the more common compiling methods are detailed on this page. Additionally, the most recent tagged version releases are available for download.

If one wishes to download the code via the command line, we provide two supported options in the subsections below. For non-developers (those not interested in modifying the source code), the a 64-bit version of the compiled controller can be downloaded via Anaconda. For users needing a 32-bit version on Windows and/or developers, CMake can be used to compile the Fortran code.

Anaconda download for non-developers

For users familiar with Anaconda, a 64-bit version of ROSCO is available through the conda-forge channel. In order to download the most recently compiled version release, from an anaconda powershell (Windows) or terminal (Mac/Linux) window, create a new anaconda virtual environment:

```
conda config --add channels conda-forge
conda create -y --name rosco-env python=3.8
conda activate rosco-env
```

navigate to your desired folder to save the compiled binary using:

```
cd <my_desired_folder>
```

and download the controller:

```
conda install -y ROSCO
```

This will download a compiled ROSCO binary file into the default filepath for any dynamic libraries downloaded via anaconda while in the ROSCO-env. The ROSCO binary file can be copied to your desired folder using:

```
cp $CONDA_PREFIX/lib/libdiscon.* .
```

on linux or:

```
copy %CONDA_PREFIX%/lib/libdiscon.* .
```

on Windows.

CMake for developers (Mac/linux)

CMake provides a straightforward option for many users, particularly those on a Mac or Linux. On Mac/Linux, ROSCO can be compiled by first cloning the source code from git using:

```
git clone https://github.com/NREL/ROSCO.git
```

And then compiling using CMake:

```
cd ROSCO
mkdir build
cd build
cmake ..
make install
```

This will generate a file called libdiscon.so (Linux) or libdiscon.dylib (Mac) in the /ROSCO/install/lib directory.

CMake for developers/32-bit (Windows)

To compile ROSCO on Windows, you first need a Fortran compiler. If you need a 32-bit DLL, then we recommend installing MinGW (Section 2). If you require a 64-bit version, you can install the MSYS2 toolchain through conda:

```
conda install m2w64-toolchain libpython
```

Note that if you have the 64-bit toolchain installed in your environment, you might have conflicts with the 32-bit compiler. We recommend therefore keeping separate environments if you want to compile 32- or 64-bit.

Once you have your Fortran compiler successfully installed and configured, the build process is similar to on Mac and linux:

```
cd ROSCO
mkdir build
cd build
cmake .. -G "MinGW Makefiles"
mingw32-make
```

Note that the mingw32-make command is (confusingly) valid for both 64-bit and 32-bit MinGW.

This will generate a file called libdiscon.dll in the /ROSCO/install/lib directory.

4.1.2 Full ROSCO toolbox

We recommend using the full ROSCO toolbox so that you can leverage the entire toolchain.

Installing

Installation of the complete ROSCO toolbox is made easy through Anaconda. If you do not already have Anaconda installed on your machine, please install it.

Then please follow the following steps:

1. Create a conda environment for ROSCO

```
conda config --add channels conda-forge
conda create -y --name rosco-env python=3.8
conda activate rosco-env
```

2. Install WISDEM

```
conda install -y wisdem
```

You should then do step three *or* four. If you do not want to compile the ROSCO controller within the installation of the ROSCO toolbox, please follow the instructions for compiling_rosco.

3. Clone and Install the ROSCO toolbox with ROSCO

```
git clone https://github.com/NREL/ROSCO_toolbox.git
cd ROSCO_toolbox
git submodule init
git submodule update
conda install compilers # (Mac/Linux only)
conda install m2w64-toolchain libpython # (Windows only)
python setup.py install --compile-rosco
```

4. Clone and Install the ROSCO toolbox without ROSCO

```
git clone https://github.com/NREL/ROSCO_toolbox.git
cd ROSCO_toolbox
python setup.py install
```

Alternatively...

If you wish to write your own scripts to leverage the ROSCO toolbox tools, but do not necessarily need the source code or to run any of the examples, the ROSCO toolbox is available via PyPi:

```
pip install rosco_toolbox
```

Note that if you do choose to install the ROSCO Toolbox this way, you will not have the source code. Additionally, you will need to download WISDEM and the ROSCO controller separately if you wish to use any of the ROSCO toolbox functionalities that need those software packages.

Updating the ROSCO Toolbox

Simple git commands should update the toolbox and controller as development continues: ` git pull git submodule update ` and then recompile and reinstall as necessary...

Getting Started

Please see a the Standard ROSCO Workflow for several example scripts using ROSCO and the ROSCO_toolbox.

4.2 Standard ROSCO Workflow

This page outlines methods for reading turbine models, generating the control parameters of a DISCON.IN: file, and running aeroelastic simulations to test controllers. A set of example scripts demonstrate the functionality of ROSCO_toolbox and ROSCO controller.

4.2.1 Reading Turbine Models

Control parameters depend on the turbine model. The ROSCO_toolbox uses OpenFAST inputs and an additional . yaml formatted file to set up a turbine object in python. Several OpenFAST inputs are located in Test_Cases/. The controller tuning .yaml are located in Tune_Cases/. A detailed description of the ROSCO control inputs and tuning .yaml are provided in *The DISCON.IN file* and *The ROSCO Toolbox Tuning File*, respectively.

- example_01.py loads an OpenFAST turbine model and displays a summary of its information
- example_02.py plots the C_p surface of a turbine

ROSCO requires the power and thrust coefficients for tuning control inputs and running the extended Kalman filter wind speed estimator.

• example_03.py runs cc-blade, a blade element momentum solver from WISDEM, to generate a C_p surface.

The Cp_Cq_Ct.txt (or similar) file contains the rotor performance tables that are necessary to run the ROSCO controller. This file can be located wherever you desire, just be sure to point to it properly with the PerfFileName parameter in DISCON.IN.

4.2.2 Tuning Controllers and Generating DISCON.IN

The ROSCO turbine object, which contains turbine information required for controller tuning, along with control parameters in the tuning yaml and the C_p surface are used to generate control parameters and DISCON.IN files. To tune the PI gains of the torque control, set omega_vs and zeta_vs in the yaml. Similarly, set omega_pc and zeta_pc to tune the PI pitch controller; gain scheduling is automatically handled using turbine information. Generally omega_* increases the responsiveness of the controller, reducing generator speed variations, but an also increases loading on the turbine. zeta_* changes the damping of the controller and is generally less important of a tuning parameter, but could also help with loading. The default parameters in Tune_Cases/ are known to work well with the turbines in this repository.

- example_04.py loads a turbine and tunes the PI control gains
- example_05.py tunes a controller and runs a simple simulation (not using OpenFAST)
- example_06.py loads a turbine, tunes a controller, and runs an OpenFAST simulation

Each of these examples generates a DISCON. IN file, which is an input to libdiscon.*. When running the controller in OpenFAST, DISCON. IN must be appropriately named using the DLL_FileName parameter in ServoDyn.

OpenFAST can be installed from source or in a conda environment using:

```
conda install -c conda-forge openfast
```

ROSCO can implement peak shaving (or thrust clipping) by changing the minimum pitch angle based on the estimated wind speed:

• example_07.py loads a turbine and tunes a controller with peak shaving.

By setting the ps_percent value in the tuning yaml, the minimum pitch versus wind speed table changes and is updated in the DISCON. IN file.

ROSCO also contains a method for distributed aerodynamic control (e.g., via trailing edge flaps):

• example_10.py tunes a controller for distributed aerodynamic control

4.2.3 Running OpenFAST Simulations

To run an aeroelastic simulation with ROSCO, the ROSCO input (DISCON.IN) must point to a properly formatted Cp_Cq_Ct.txt file using the PerfFileName parameter. If called from OpenFAST, the main OpenFAST input points to the ServoDyn input, which points to the DISCON.IN file and the libdiscon.* dynamic library.

For example in *Test_Cases/NREL-5MW*:

- NREL-5MW.fst has "NRELOffshrBsline5MW_Onshore_ServoDyn.dat" as the ServoFile input
- NRELOffshrBsline5MW_Onshore_ServoDyn.dat has "../../ROSCO/build/libdiscon.dylib" as the DLL_FileName input and "DISCON.IN" as the DLL_InFile input. Note that these file paths are relative to the path of the main fast input (NREL-5MW.fst)
- DISCON.IN has "Cp_Ct_Cq.NREL5MW.txt" as the PerfFileName input

The ROSCO_toolbox has methods for running OpenFAST (and other) binary executables using system calls, as well as post-processing tools in ofTools/.

Several example scripts are set up to quickly simulate ROSCO with OpenFAST:

- example_06.py loads a turbine, tunes a controller, and runs an OpenFAST simulation
- example_08.py loads the OpenFAST output files and plots the results
- example_09.py runs TurbSim, for generating turbulent wind inputs

4.2.4 Testing ROSCO

The ROSCO_toolbox also contains tools for testing ROSCO in IEC design load cases (DLCs), located in ROSCO_testing/. The script run_Testing.py allows the user to set up their own set of tests. By setting testtype, the user can run a variety of tests:

- lite, which runs DLC 1.1 simulations at 5 wind speed from cut-in to cut-out, in 330 second simulations
- heavy, which runs DLC 1.3 from cut-in to cut-out in 2 m/s steps and 2 seeds for each, in 630 seconds, as well as DLC 1.4 simulations
- binary-comp, where the user can compare libdiscon.* dynamic libraries (compiled ROSCO source code), with either a lite or heavy set of simulations

 discon-comp, where the user can compare DISCON. IN controller tunings (and the complied ROSCO source is constant)

Setting the turbine2test allows the user to test either the IEA-15MW with the UMaine floating semisubmersible or the NREL-5MW reference onshore turbine.

4.3 ROSCO Toolbox Structure

Here, we give an overview of the structure of the ROSCO toolbox and how the code is implemented.

4.3.1 File Structure

The primary tools of the ROSCO toolbox are separated into several folders. They include the following:

ROSCO toolbox

The source code for the ROSCO toolbox generic tuning implementations lives here.

- turbine.py loads a wind turbine model from OpenFAST input files.
- controller.py contains the generic controller tuning scripts
- utilities.py has most of the input/output file management scripts
- control_interface.py enables a python interface to the ROSCO controller
- sim.py is a simple 1-DOF model simulator
- of Tools is a folder containing a large set of tools to handle OpenFAST input files this is primarily used to run large simulation sets and to handle reading and processing of OpenFAST input and output files.

Examples

A number of examples are included to showcase the numerous capabilities of the ROSCO toolbox; they are described in the *Standard ROSCO Workflow*.

Matlab_Toolbox

A simulink implementation of the ROSCO controller is included in the Matlab Toolbox. Some requisite MATLAB utility scripts are also included.

ROSCO testing

Testing scripts for the ROSCO toolbox are held here and showcased with run_testing.py. These can be used to compare different controller tunings or different controllers all together.

Test Cases

Example OpenFAST models consistent with the latest release of OpenFAST are provided here for simple testing and simulation cases.

Tune_Cases

Some example tuning scripts and tuning input files are provided here. The code found in tune_ROSCO.py can be modified by the user to easily enable tuning of their own wind turbine model.

4.3.2 The ROSCO Toolbox Tuning File

A yaml formatted input file is used for the standard ROSCO toolbox tuning process. This file contains the necessary inputs for the ROSCO toolbox to load an OpenFAST input file deck and tune the ROSCO controller. It contains the following inputs:

Table 4.1: ROSCO toolbox input yaml

Primary Sec-	Variable	Re-	Туре	Description
tion		quired		
path_params	FAST_InputFi	le Yes	String	Name of the primary (*.fst) OpenFAST input file
	FAST_directo	ry Yes	String	Main OpenFAST model directory, where the *.fst lives
	rotor_perfor	maMoce_fil	enSamie g	Filename for rotor performance text file. If this is not
				specified, and an existing rotor performance file cannot
				be found, cc-blade will be run
turbine_para	mstotor_interi	a Yes	Float	Rotor inertia [kg m^2], (Available in Elastodyn .sum
				file)
	rated_rotor_	sp Yees d	Float	Rated rotor speed of the turbine [rad/s]
	v_min	Yes	Float	Cut-in wind speed [m/s]
	v_max	Yes	Float	Cut-out wind speed [m/s]
	max_pitch_ra	t e Yes	Float	Maximum blade pitch rate [rad/s]
	max_torque_r	at Y es	Float	Maximum generator torque rate [Nm/s]
	rated_power	Yes	Float	Rated Power [W].
	bld_edgewise	_fhreesq	Float	Blade edgewise first natural frequency [rad/s]. Set this
				even if you are using stiff blades. It becomes the gener-
				ator speed LPF bandwidth.
	TSR_operation	n aN o	Float	Desired below-rated operation tip speed ratio [-]. If this
				is not specified, the Cp-maximizing TSR from the Cp
				surface is used.
	twr_freq	No	Float	Tower first fore-aft natural frequency [rad/s]. Required
				for floating wind turbine control.
	ptfm_freq	No	Float	Platform first fore-aft natural frequency [rad/s]. Re-
				quired for floating wind turbine control.
controller_p	a rtangs gingLevel	Yes	Int	0: write no debug files, 1: write standard output .dbg-
				file, 2: write standard output .dbg-file and complete
				avrSWAP-array .dbg2-file
	F_LPFType	Yes	Int	Type of Low pass filter for the generator speed feedback
				signal [rad/s]. 1: first-order low-pass filter, 2: second-
				order low-pass filter.

Table 4.1 – continued from previous page

Dulas - C	Manichi			Describition
Primary Sec- tion	Variable	Re- quired	Type	Description
	F_NotchType	Yes	Int	Notch filter on generator speed and/or tower fore-aft mo-
				tion, used for floating wind turbine control. 0: disable,
				1: generator speed, 2: tower-top fore-aft motion, 3: gen-
				erator speed and tower-top fore-aft motion
	IPC_ControlM	od Y ées	Int	Turn Individual Pitch Control (IPC) for fatigue load re-
				ductions (pitch contribution). 0: off, 1: 1P reductions,
				2: 1P+2P reductions.
	VS_ControlMo	deYes	Int	Generator torque control mode. 0: $k\omega^2$ below rated,
				constant torque above rated, 1: $k\omega^2$ below rated, con-
				stant power above rated, 2: TSR tracking PI control be-
				low rated, constant torque above rated, 3: TSR tracking
				PI control below rated, constant power above rated.
	PC_ControlMo	deYes	Int	Blade pitch control mode. 0: No pitch control, fix to fine
	_			pitch, 1: active PI blade pitch control
	Y_ControlMod	e Yes	Int	Yaw control mode. 0: no yaw control, 1: yaw rate con-
				trol, 2: yaw-by-IPC
	SS_Mode	Yes	Int	Setpoint Smoother mode. 0: no set point smoothing, 1:
				set point smoothing
	WE_Mode	Yes	Int	Wind speed estimator mode. 0: One-second low pass
	_			filtered hub height wind speed, 1: Immersion and In-
				variance Estimator (Ortega et al.), 2: Extended Kalman
				filter
	PS_Mode	Yes	Int	Pitch saturation mode. 0: no pitch saturation, 1: peak
	100	100		shaving, 2: Cp-maximizing pitch saturation, 3: peak
				shaving and Cp-maximizing pitch saturation
	SD_Mode	Yes	Int	Shutdown mode. 0: no shutdown procedure, 1: pitch to
	DD_Houc	103		max pitch at shutdown.
	Fl_Mode	Yes	Int	Floating feedback mode. 0: no nacelle rotational veloc-
	11	105		ity feedback, 1: nacelle rotational velocity feedback
	Flp_Mode	Yes	Int	Flap control mode. 0: no flap control, 1: steady state
	1 Ip_noue	103		flap angle, 2: Proportional flap control
	zeta_pc	Yes	Float	Pitch controller desired damping ratio [-]
	omega_pc	Yes	Float	Pitch controller desired natural frequency [rad/s]
	zeta_vs	Yes	Float	Torque controller desired damping ratio [-]
		Yes	Float	Torque controller desired natural frequency [rad/s]
	omega_vs zeta_flp	No	Float	Flap controller desired damping ratio [-]. Required if
	261a_11h	110	Tioat	Flp_Mode>0
	omega_flp	No	Float	Flap controller desired natural frequency [rad/s]. Re-
				quired if Flp_Mode>0
	max_pitch	No	Float	Maximum blade pitch angle [rad]. Default is 1.57 rad
				(90 degrees).
	min_pitch	No	Float	Minimum blade pitch angle [rad]. Default is 0 degrees.
	vs_minspd	No	Float	Minimum rotor speed [rad/s]. Default is 0 rad/s.
	ss_cornerfre	q No	Float	First order low-pass filter cornering frequency for set-
				point smoother [rad/s]. Default is .6283 rad/s.
	ss_vsgain	No	Float	Torque controller set point smoother gain bias percent-
				age [\leq 1]. Default is 1.
	ss_pcgain	No	Float	Pitch controller set point smoother gain bias percentage
				≤ 1 . Default is 0.001.
	1		1	continues on next page

Table 4.1 – continued from previous page

Primary Sec-	Variable	Re-	Type	Description
tion		quired		
	ps_percent	No	Float	Percent peak shaving [≤ 1]. Default is 0.8.
	sd_maxpit	No	Float	Maximum blade pitch angle to initiate shutdown [rad].
				Default is the blade pitch angle at v_max.
	sd_cornerfre	q No	Float	Cutoff Frequency for first order low-pass filter for blade
				pitch angle [rad/s]. Default is 0.41888 rad/s.
	flp_maxpit	No	Float	Maximum (and minimum) flap pitch angle [rad]. De-
				fault is 0.1745 rad (10 degrees).

4.4 ROSCO Controller Structure

Here, we give an overview of the structure of the ROSCO controller and how the code is implemented.

4.4.1 File Structure

The primary functions of the ROSCO toolbox are separated into several files. They include the following:

- DISCON. f90 is the primary driver function.
- ReadSetParameters. f90 primarily handles file I/O and the Bladed Interface.
- ROSCO_Types.f90 allocates variables in memory.
- Constants. f90 establishes some global constants.
- Controllers.f90 contains the primary controller algorithms (e.g. blade pitch control)
- ControllerBlocks.f90 contains additional control features that are not necessarily primary controllers (e.g. wind speed estimator)
- Filters.f90 contains the various filter implementations.
- Functions . f90 contains various functions used in the controller.

4.4.2 The DISCON.IN file

A standard file structure is used as an input to the ROSCO controller. This is, generically, dubbed the DISCON.IN file, though it can be renamed (In OpenFAST, this file is pointed to by DLL_InFile in the ServoDyn file. Examples of the DISCON.IN file are found in each of the Test Cases in the ROSCO toolbox, and in the parameter_files folder of ROSCO.

Table 4.2: DISCON.IN

Pri- mary Section	Vari- able	Туре	Description
DE- BUG	LoggingL	e lm el	0: write no debug files, 1: write standard output .dbg-file, 2: write standard output .dbg-file and complete avrSWAP-array .dbg2-file

Table 4.2 – continued from previous page

Pri-	Vari-	Туре	Description
	able	туре	Description
mary Section	able		
CON-	E IDET	T 4	Filter time for any and first head size 1 to first and a law and file 2.
	F_LPFTy]	peint	Filter type for generator speed feedback signal. 1: first-order low-pass filter, 2:
TROLLEI	n e		second-order low-pass filter.
FLAGS	T 37 . 1.0	T .	N . 1 Ct
	F_Notch	lype	Notch filter on the measured generator speed and/or tower fore-aft motion (used
			for floating). 0: disable, 1: generator speed, 2: tower-top fore-aft motion, 3:
			generator speed and tower-top fore-aft motion.
	IPC_Con	tr bi tMode	Individual Pitch Control (IPC) type for fatigue load reductions (pitch contribu-
			tion). 0: off, 1: 1P reductions, 2: 1P+2P reductions.
	VS_Cont	rolliMode	Generator torque control mode type. 0: $k\omega^2$ below rated, constant torque above
			rated, 1: $k\omega^2$ below rated, constant power above rated, 2: TSR tracking PI con-
			trol below rated, constant torque above rated, 3: TSR tracking PI control below
			rated, constant torque above rated
	PC_Cont	ro l li M ode	Blade pitch control mode. 0: No pitch, fix to fine pitch, 1: active PI blade pitch
			control.
	Y_Contro	1 Mu de	Yaw control mode. 0: no yaw control, 1: yaw rate control, 2: yaw-by-IPC.
	SS_Mode	Int	Setpoint Smoother mode. 0: no set point smoothing, 1: use set point smoothing.
	WE_Mode	Int	Wind speed estimator mode. 0: One-second low pass filtered hub height wind
			speed, 1: Immersion and Invariance Estimator, 2: Extended Kalman Filter.
	PS_Mode	Int	Pitch saturation mode. 0: no pitch saturation, 1: implement pitch saturation
	SD_Mode	Int	Shutdown mode. 0: no shutdown procedure, 1: shutdown triggered by max
			blade pitch.
	Fl_Mode	Int	Floating feedback mode. 0: no nacelle velocity feedback, 1: nacelle velocity
			feedback (parallel compensation).
	Flp_Mode	Int	Flap control mode. 0: no flap control, 1: steady state flap angle, 2: PI flap
	•		control.
FIL-	F_LPFCo	n Ekareq	Corner frequency (-3dB point) in the generator speed low-pass filter, [rad/s]
TERS		_	
	F_LPFDar	np Fho at	Damping coefficient in the generator speed low-pass filter, [-]. Only used only
		1 5	when F_FilterType = 2
	F Notch	oFhentFred	Natural frequency of the notch filter, [rad/s]
			Notch damping values of numerator and denominator - determines the width and
		Float	depth of the notch, [-]
	F_SSCori		Corner frequency (-3dB point) in the first order low passfilter for the set point
			smoother, [rad/s].
	F_F1Cori	ne l Flomen	Corner frequency and damping ratio for the second order low pass filter of the
		Float	tower-top fore-aft motion for floating feedback control [rad/s, -].
	F FlnCo	rnEktateq	Corner frequency and damping ratio in the second order low pass filter of the
		Float	blade root bending moment for flap control [rad/s, -].
BLADE	PC_GS_n	Int	Number of gain-scheduling table entries
PITCH			
CON-			
TROL			
	PC_GS_aı	naFlerent	Gain-schedule table: pitch angles [rad].
	1 5_55_41	array,	Cam concesse more, pron ungres [rue].
		length =	
		PC_GS_n	
		1 6 43 11	

Table 4.2 – continued from previous page

			Table 4.2 – continued from previous page
Pri-	Vari-	Туре	Description
mary	able		
Section			
	PC_GS_KP	Float	Gain-schedule table: pitch controller proportional gains [s].
		array,	
		length =	
		PC_GS_n	
	PC_GS_KI		Gain-schedule table: pitch controller integral gains [-].
	1 C_03_K1	array,	Gam-schedule table. pitch controller integral gams [-].
		length =	
		PC_GS_n	
	PC_GS_KD		Gain-schedule table: pitch controller derivative gains $[s^2]$. Currently unused!
	rc_gs_kb		Gam-schedule table. pitch controller derivative gams [8]. Currently unused:
		array,	
		length =	
		PC_GS_n	
	PC_GS_TF		Gain-schedule table: transfer function gains $[s^2]$. Currently unused!
		array,	
		length =	
		PC_GS_n	
	PC_MaxPi		Maximum physical pitch limit, [rad].
	PC_MinPi	tFloat	Minimum physical pitch limit, [rad].
	PC_MaxRa	tFloat	Maximum pitch rate (in absolute value) of pitch controller, [rad/s].
	PC_MinRa	tFloat	Minimum pitch rate (in absolute value) in pitch controller, [rad/s].
	PC_RefSpdFloat		Desired (reference) HSS speed for pitch controller, [rad/s].
	PC_FinePiFloat		Below-rated pitch angle set-point, [rad]
	PC_Swite		Angle above lowest PC_MinPit to switch to above rated torque control, [rad].
			Used for :code: VS_ControlMode = 0,1.
INDI-	IPC_IntS	a E loat	Integrator saturation point (maximum signal amplitude contribution to pitch
VID-			from IPC), [rad]
UAL			· -//, []
PITCH			
CON-			
TROL			
11102	IPC_KI	Float	Integral gain for the individual pitch controller: first parameter for 1P reductions,
	11.C_VI	Float	second for 2P reductions, [-, -].
	IPC_azi0		Phase offset added to the azimuth angle for the individual pitch controller: first
	Ir C_dZIO	Float	
	TDC C-		parameter for 1P reductions, second for 2P reductions, [rad].
	Trc_corn	le Ff oræeqAct	· ·
1/0	770 0 -	CEI :	in the IPC signal [rad/s]. 0: Disable.
VS	VS_GenEf	±Float	Generator efficiency from mechanical power -> electrical power, [should match
TORQUE			the efficiency defined in the generator properties!], [%]
CON-			
TROL			
	VS_ArSat		Above rated generator torque PI control saturation limit, [Nm].
	VS_MaxRa	tFloat	Maximum generator torque rate (in absolute value) [Nm/s].
	VS_MaxTq	Float	Maximum generator torque (HSS), [Nm].
	VS_MinTq	Float	Minimum generator torque (HSS) [Nm].
	VS_MinOM		Cut-in speed towards optimal mode gain path, [rad/s]. Used if
		-	VS_ControlMode = 0,1.
	VS_Rgn2K	Float	Generator torque constant in Region 2 (HSS side), [N-m/(rad/s)^2]. Used if
	, 5_1\g1.21\	. 11041	VS_ControlMode = 0,1.
			vs_continues on next page

Table 4.2 – continued from previous page

			Table 4.2 – continued from previous page		
Pri-	Vari-	Type	Description		
mary	able				
Section					
	VS_RtPwr	Float	Rated power [W]		
	VS_RtTq	Float	Rated torque, [Nm].		
	VS_RefSpdFloat		Rated generator speed used by torque controller [rad/s].		
	VS_n	Int	Number of generator PI torque controller gains. Only 1 is currently supported.		
	VS_KP	Float	Proportional gain for generator PI torque controller [1/(rad/s) Nm]. (Used		
	V 5_K1	Tiout	in the transition 2.5 region if VS_ControlMode = 0,1. Always used if		
			VS_ControlMode = 2,3)		
	VS_KI	Float	Integral gain for generator PI torque controller [1/rad Nm]. (Only used		
	V2_K1	Tioat			
			in the transition 2.5 region if VS_ControlMode = 0,1. Always used if		
	****	. 771	VS_ControlMode = 2,3)		
	VS_TSRop	tFloat	Region 2 tip-speed-ratio [rad]. Generally, the power maximizing TSR. Can use		
			non-optimal TSR for low axial induction rotors.		
SET-	SS_VSGai	nFloat	Variable speed torque controller setpoint smoother gain, [-].		
POINT					
SMOOTH					
	SS_PCGai		Collective pitch controller setpoint smoother gain, [-].		
WIND	WE_Blade	REddiats	Blade length (distance from hub center to blade tip), [m]		
SPEED					
ESTI-					
MA-					
TOR					
	WE_CP_n	Int	Number of parameters in the Cp array		
	WE_CP	Float	Parameters that define the parameterized CP(lambda) function		
		Float			
		Float			
		Float			
	WE_Gamma		Adaption gain for the I&I wind speed estimator algorithm [m/rad]		
	WE_Geark		Gearbox ratio [>=1], [-]		
	WE_Jtot	Float	Total drivetrain inertia, including blades, hub and casted generator inertia to		
	WE_JCOC	Tioat			
	WE Dhase	mClost	LSS, [kg m^2]		
	WE_RhoAi		Air density, [kg m^-3]		
	PerfFile	_	File containing rotor performance tables (Cp,Ct,Cq)		
	PerfTabl	e Britzle t	Size of rotor performance tables in PerfFileName, first number refers to num-		
			ber of blade pitch angles (num columns), second number refers to number of		
			tip-speed ratios (num rows)		
	WE_FOPol		Number of first-order system poles used in the Extended Kalman Filter		
	WE_FOPol	e Elox at	Wind speeds for first-order system poles lookup table [m/s]		
		array,			
		length =			
		WE_FOPol	es_N		
	WE_FOPol		First order system poles [1/s]		
		array,			
		length =			
		WE_FOPol	es N		
YAW	Y_ErrThr		Yaw error threshold. Turbine begins to yaw when it passes this. [rad^2 s]		
		CBIDAL	1 aw error arreshold. Turome begins to yaw when it passes this, [1at 2 8]		
CON-					
CON- TROL					

Table 4.2 – continued from previous page

			Table 4.2 – continued from previous page
Pri-	Vari-	Type	Description
mary	able		
Section			
	Y_IPC_In	t Ekot at	Integrator saturation (maximum signal amplitude contribution to pitch from
			yaw-by-IPC), [rad]
	Y_IPC_n	Int	Number of controller gains for yaw-by-IPC
	Y_IPC_KP		Yaw-by-IPC proportional controller gains Kp [s]
		array,	2
		length =	
		Y_IPC_n	
	Y_IPC_KI		Yaw-by-IPC integral controller gain Ki [-]
	1_11 0_1(1	array,	Tun by it a magnite controller gain in []
		length =	
		Y_IPC_n	
	Y_IPC_on		Low-pass filter corner frequency for the Yaw-by-IPC controller to filtering the
	1_11 C_0II	.cyatan	yaw alignment error, [rad/s].
	Y_IPC_ze	+Fi _{cDt}	Low-pass filter damping factor for the Yaw-by-IPC controller to filtering the yaw
	1_110_26	CHILIAI	
	V MCC	+Elect	alignment error, [-].
	Y_MErrSe		Yaw alignment error set point, [rad].
	Y_omegaL		Corner frequency fast low pass filter, [rad/s].
	Y_omegaL		Corner frequency slow low pass filter, [rad/s].
	Y_Rate	Float	Yaw rate, [rad/s].
TOWER	FA_KI	Float	Integral gain for the fore-aft tower damper controller [rad*s/m]1 = off
FORE-			
AFT			
DAMP-			
ING			
	FA_HPF_C	o Fheat Fred	Corner frequency (-3dB point) in the high-pass filter on the fore-aft acceleration
			signal [rad/s]
	FA_IntSa	tFloat	Integrator saturation (maximum signal amplitude contribution to pitch from FA
			damper), [rad]
MINI-	PS_BldPi	t bh Min_N	Number of values in minimum blade pitch lookup table.
MUM			
PITCH			
SAT-			
URA-			
TION			
	PS_WindS	pEkds	Wind speeds corresponding to minimum blade pitch angles [m/s]
		array,	1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		length =	
			tchMin_n
	PS_BldPi		Minimum blade pitch angles [rad]
		array,	
		length =	
		_	tchMin_n
SHUT-	SD_MaxPi		Maximum blade pitch angle to initiate shutdown, [rad]
DOWN	JD_HAAF I	ci ioat	Maximum older piten angle to findate shuttown, [rau]
DOWN	SD_Corne	rEkort	Cutoff Frequency for first order low-pass filter for blade pitch angle, [rad/s]
FLOAT-	Fl_Kp	Float	Nacelle velocity proportional feedback gain [s]
ING			

Table 4.2 – continued from previous page

Pri-	Vari-	Type	Description
mary	able		
Section			
FLAP	Flp_AngleFloat		Initial or steady state flap angle [rad]
ACTU-			
ATION			
	Flp_Kp	Float	Trailing edge flap control proportional gain [s]
	Flp_Ki	Float	Trailing edge flap control integral gain [s]
	Flp_MaxPi E loat		Maximum (and minimum) flap angle [rad]

License Copyright 2020 NREL

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.