

ROSCO toolbox documentation

	Version

	v2.2.0

	Date

	Jun 11, 2021

NREL’s Reference OpenSource Controller (ROSCO) toolbox for wind turbine applications is a toolbox designed to ease controller implementation for the wind turbine researcher. The purpose of these documents is to provide information for the use of the ROSCO related toolchain.

Figure Fig. 1 shows the general workflow for the ROSCO toolchain.

[image: ROSCO_toolbox]

Fig. 1 ROSCO toolchain general workflow

ROSCO Toolbox

	Generic tuning of NREL’s ROSCO controller

	Simple 1-DOF turbine simulations for quick controller capability verifications

	Parsing of OpenFAST input and output files

	Block diagrams of these capabilities can be seen in architecture.png.

ROSCO Controller

	Fortran based

	Follows Bladed-style control interface

	Modular

Standard Use

For the standard use case in OpenFAST, ROSCO will need to be compiled. This is made possible via the instructions found in Installing the ROSCO tools. Once the controller is compiled, the turbine model needs to point to the compiled binary. In OpenFAST, this is ensured by changing the DLL_FileName parameter in the ServoDyn input file.

Additionally, an additional input file is needed for the ROSCO controller. Though the controller only needs to be compiled once, each individual turbine/controller tuning requires an input file. This input file is generically dubbed “DISCON.IN’’. In OpenFAST, the DLL_InFile parameter should be set to point to the desired input file. The ROSCO toolbox is used to automatically generate the input file. These instructions are provided in the instructions for Standard ROSCO Workflow.

Technical Documentation

A publication highlighting much of the theory behind the controller tuning and implementation methods can be found at:
https://wes.copernicus.org/preprints/wes-2021-19/

Survey

Please help us better understand the ROSCO user-base and how we can improve ROSCO through this brief survey:

 1. Installing the ROSCO tools

1. Installing the ROSCO tools

Depending on what is needed, a user can choose to use just the ROSCO controller or to use both the ROSCO controller and the toolbox.
Both the controller and the toolbox should be installed if one wishes to leverage the full ROSCO toolchain.

For users who wish to use the ROSCO toolbox (with or without the controller), please skip to the section on section ROSCO Toolbox Structure.
For users planning to only download and compile the ROSCO controller, please follow the instructions on ROSCO controller.
For information on best practices to update to the most recent version of the ROSCO toolbox, see Updating the ROSCO Toolbox.

1.1. ROSCO controller

The standard ROSCO controller is based in Fortran and must be compiled; this code can be found at: https://github.com/NREL/ROSCO.
Of course, the advanced user can compile the downloaded code using their own desired methods (e.g. Visual Studio).
Otherwise, a few of the more common compiling methods are detailed on this page.
Additionally, the most recent tagged version releases are available for download [https://github.com/NREL/ROSCO/tags].

If one wishes to download the code via the command line, we provide two supported options in the subsections below.
For non-developers (those not interested in modifying the source code), the a 64-bit version of the compiled controller can be downloaded via Anaconda.
For users needing a 32-bit version on Windows and/or developers, CMake can be used to compile the Fortran code.

1.1.1. Anaconda download for non-developers

For users familiar with Anaconda [https://www.anaconda.com/], a 64-bit version of ROSCO is available through the conda-forge channel.
In order to download the most recently compiled version release, from an anaconda powershell (Windows) or terminal (Mac/Linux) window, create a new anaconda virtual environment:

conda config --add channels conda-forge
conda create -y --name rosco-env python=3.8
conda activate rosco-env

navigate to your desired folder to save the compiled binary using:

cd <my_desired_folder>

and download the controller:

conda install -y ROSCO

This will download a compiled ROSCO binary file into the default filepath for any dynamic libraries downloaded via anaconda while in the ROSCO-env.
The ROSCO binary file can be copied to your desired folder using:

cp $CONDA_PREFIX/lib/libdiscon.* .

on linux or:

copy %CONDA_PREFIX%/lib/libdiscon.* .

on Windows.

1.1.2. CMake for developers (Mac/linux)

CMake [https://cmake.org/] provides a straightforward option for many users, particularly those on a Mac or Linux.
On Mac/Linux, ROSCO can be compiled by first cloning the source code from git using:

git clone https://github.com/NREL/ROSCO.git

And then compiling using CMake:

cd ROSCO
mkdir build
cd build
cmake ..
make install

This will generate a file called libdiscon.so (Linux) or libdiscon.dylib (Mac) in the /ROSCO/install/lib directory.

1.1.3. CMake for developers/32-bit (Windows)

To compile ROSCO on Windows, you first need a Fortran compiler. If you need a 32-bit DLL, then we recommend installing MinGW [http://capsis.cirad.fr/capsis/documentation/mingw-installation] (Section 2).
If you require a 64-bit version, you can install the MSYS2 toolchain through conda:

conda install m2w64-toolchain libpython

Note that if you have the 64-bit toolchain installed in your environment, you might have conflicts with the 32-bit compiler. We recommend therefore keeping separate environments if you want to compile 32- or 64-bit.

Once you have your Fortran compiler successfully installed and configured, the build process is similar to on Mac and linux:

cd ROSCO
mkdir build
cd build
cmake .. -G "MinGW Makefiles"
mingw32-make

Note that the mingw32-make command is (confusingly) valid for both 64-bit and 32-bit MinGW.

This will generate a file called libdiscon.dll in the /ROSCO/install/lib directory.

1.2. Full ROSCO toolbox

We recommend using the full ROSCO toolbox so that you can leverage the entire toolchain.

1.2.1. Installing

Installation of the complete ROSCO toolbox is made easy through Anaconda [https://www.anaconda.com/].
If you do not already have Anaconda installed on your machine, please install it.

Then please follow the following steps:

	Create a conda environment for ROSCO

conda config --add channels conda-forge
conda create -y --name rosco-env python=3.8
conda activate rosco-env

	Install WISDEM

conda install -y wisdem

You should then do step three or four.
If you do not want to compile the ROSCO controller within the installation of the ROSCO toolbox, please follow the instructions for compiling_rosco.

	Clone and Install the ROSCO toolbox with ROSCO

git clone https://github.com/NREL/ROSCO_toolbox.git
cd ROSCO_toolbox
git submodule init
git submodule update
conda install compilers # (Mac/Linux only)
conda install m2w64-toolchain libpython # (Windows only)
python setup.py install --compile-rosco

	Clone and Install the ROSCO toolbox without ROSCO

git clone https://github.com/NREL/ROSCO_toolbox.git
cd ROSCO_toolbox
python setup.py install

Alternatively…

If you wish to write your own scripts to leverage the ROSCO toolbox tools, but do not necessarily need the source code or to run any of the examples, the ROSCO toolbox is available via PyPi:

pip install rosco_toolbox

Note that if you do choose to install the ROSCO Toolbox this way, you will not have the source code. Additionally, you will need to download WISDEM and the ROSCO controller separately if you wish to use any of the ROSCO toolbox functionalities that need those software packages.

1.2.2. Updating the ROSCO Toolbox

Simple git commands should update the toolbox and controller as development continues:
`
git pull
git submodule update
`
and then recompile and reinstall as necessary…

1.2.3. Getting Started

Please see a the Standard ROSCO Workflow for several example scripts using ROSCO and the ROSCO_toolbox.

 2. Standard ROSCO Workflow

2. Standard ROSCO Workflow

This page outlines methods for reading turbine models, generating the control parameters of a DISCON.IN: file, and running aeroelastic simulations to test controllers.
A set of example scripts [https://github.com/NREL/ROSCO_toolbox/tree/main/Examples] demonstrate the functionality of ROSCO_toolbox and ROSCO controller.

2.1. Reading Turbine Models

Control parameters depend on the turbine model.
The ROSCO_toolbox uses OpenFAST inputs and an additional .yaml formatted file to set up a turbine object in python.
Several OpenFAST inputs are located in Test_Cases/ [https://github.com/NREL/ROSCO_toolbox/tree/main/Test_Cases].
The controller tuning .yaml are located in Tune_Cases/ [https://github.com/NREL/ROSCO_toolbox/tree/main/Tune_Cases].
A detailed description of the ROSCO control inputs and tuning .yaml are provided in The DISCON.IN file and The ROSCO Toolbox Tuning File, respectively.

	example_01.py loads an OpenFAST turbine model and displays a summary of its information

	example_02.py plots the \(C_p\) surface of a turbine

ROSCO requires the power and thrust coefficients for tuning control inputs and running the extended Kalman filter wind speed estimator.

	example_03.py runs cc-blade, a blade element momentum solver from WISDEM, to generate a \(C_p\) surface.

The Cp_Cq_Ct.txt (or similar) file contains the rotor performance tables that are necessary to run the ROSCO controller.
This file can be located wherever you desire, just be sure to point to it properly with the PerfFileName parameter in DISCON.IN.

2.2. Tuning Controllers and Generating DISCON.IN

The ROSCO turbine object, which contains turbine information required for controller tuning, along with control parameters in the tuning yaml and the \(C_p\) surface are used to generate control parameters and DISCON.IN files.
To tune the PI gains of the torque control, set omega_vs and zeta_vs in the yaml.
Similarly, set omega_pc and zeta_pc to tune the PI pitch controller; gain scheduling is automatically handled using turbine information.
Generally omega_* increases the responsiveness of the controller, reducing generator speed variations, but an also increases loading on the turbine.
zeta_* changes the damping of the controller and is generally less important of a tuning parameter, but could also help with loading.
The default parameters in Tune_Cases/ [https://github.com/NREL/ROSCO_toolbox/tree/main/Tune_Cases] are known to work well with the turbines in this repository.

	example_04.py loads a turbine and tunes the PI control gains

	example_05.py tunes a controller and runs a simple simualtion (not using OpenFAST)

	example_06.py loads a turbine, tunes a controller, and runs an OpenFAST simulation

Each of these examples generates a DISCON.IN file, which is an input to libdiscon.*.
When running the controller in OpenFAST, DISCON.IN must be appropriately named using the DLL_FileName parameter in ServoDyn.

OpenFAST can be installed from source [https://github.com/OpenFAST/openfast] or in a conda environment using:

conda install -c conda-forge openfast

ROSCO can implement peak shaving (or thrust clipping) by changing the minimum pitch angle based on the estimated wind speed:

	example_07.py loads a turbine and tunes a controller with peak shaving.

By setting the ps_percent value in the tuning yaml, the minimum pitch versus wind speed table changes and is updated in the DISCON.IN file.

ROSCO also contains a method for distributed aerodynamic control (e.g., via trailing edge flaps):

	example_10.py tunes a controller for distributed aerodynamic control

2.3. Running OpenFAST Simulations

To run an aeroelastic simulation with ROSCO, the ROSCO input (DISCON.IN) must point to a properly formatted Cp_Cq_Ct.txt file using the PerfFileName parameter.
If called from OpenFAST, the main OpenFAST input points to the ServoDyn input, which points to the DISCON.IN file and the libdiscon.* dynamic library.

For example in Test_Cases/NREL-5MW:

	NREL-5MW.fst has "NRELOffshrBsline5MW_Onshore_ServoDyn.dat" as the ServoFile input

	NRELOffshrBsline5MW_Onshore_ServoDyn.dat has "../../ROSCO/build/libdiscon.dylib" as the DLL_FileName input and "DISCON.IN" as the DLL_InFile input.
Note that these file paths are relative to the path of the main fast input (NREL-5MW.fst)

	DISCON.IN has "Cp_Ct_Cq.NREL5MW.txt" as the PerfFileName input

The ROSCO_toolbox has methods for running OpenFAST (and other) binary executables using system calls, as well as post-processing tools in ofTools/ [https://github.com/NREL/ROSCO_toolbox/tree/develop/ROSCO_toolbox/ofTools].

Several example scripts are set up to quickly simulate ROSCO with OpenFAST:

	example_06.py loads a turbine, tunes a controller, and runs an OpenFAST simulation

	example_08.py loads the OpenFAST output files and plots the results

	example_09.py runs TurbSim, for generating turbulent wind inputs

2.4. Testing ROSCO

The ROSCO_toolbox also contains tools for testing ROSCO in IEC design load cases (DLCs), located in ROSCO_testing/ [https://github.com/NREL/ROSCO_toolbox/tree/develop/ROSCO_testing].
The script run_Testing.py allows the user to set up their own set of tests.
By setting testtype, the user can run a variety of tests:

	lite, which runs DLC 1.1 simulations at 5 wind speed from cut-in to cut-out, in 330 second simulations

	heavy, which runs DLC 1.3 from cut-in to cut-out in 2 m/s steps and 2 seeds for each, in 630 seconds, as well as DLC 1.4 simulations

	binary-comp, where the user can compare libdiscon.* dynamic libraries (compiled ROSCO source code), with either a lite or heavy set of simulations

	discon-comp, where the user can compare DISCON.IN controller tunings (and the complied ROSCO source is constant)

Setting the turbine2test allows the user to test either the IEA-15MW with the UMaine floating semisubmersible or the NREL-5MW reference onshore turbine.

 3. ROSCO Toolbox Structure

3. ROSCO Toolbox Structure

Here, we give an overview of the structure of the ROSCO toolbox and how the code is implemented.

3.1. File Structure

The primary tools of the ROSCO toolbox are separated into several folders. They include the following:

3.1.1. ROSCO_toolbox

The source code for the ROSCO toolbox generic tuning implementations lives here.

	turbine.py loads a wind turbine model from OpenFAST [https://github.com/openfast/openfast] input files.

	controller.py contains the generic controller tuning scripts

	utilities.py has most of the input/output file management scripts

	control_interface.py enables a python interface to the ROSCO controller

	sim.py is a simple 1-DOF model simulator

	ofTools is a folder containing a large set of tools to handle OpenFAST [https://github.com/openfast/openfast] input files - this is primarily used to run large simulation sets and to handle reading and processing of OpenFAST input and output files.

3.1.2. Examples

A number of examples are included to showcase the numerous capabilities of the ROSCO toolbox; they are described in the Standard ROSCO Workflow.

3.1.3. Matlab_Toolbox

A simulink implementation of the ROSCO controller is included in the Matlab Toolbox. Some requisite MATLAB utility scripts are also included.

3.1.4. ROSCO_testing

Testing scripts for the ROSCO toolbox are held here and showcased with run_testing.py. These can be used to compare different controller tunings or different controllers all together.

3.1.5. Test_Cases

Example OpenFAST models consistent with the latest release of OpenFAST are provided here for simple testing and simulation cases.

3.1.6. Tune_Cases

Some example tuning scripts and tuning input files are provided here. The code found in tune_ROSCO.py can be modified by the user to easily enable tuning of their own wind turbine model.

3.2. The ROSCO Toolbox Tuning File

A yaml [https://yaml.org/] formatted input file is used for the standard ROSCO toolbox tuning process. This file contains the necessary inputs for the ROSCO toolbox to load an OpenFAST input file deck and tune the ROSCO controller. It contains the following inputs:

Table 3.1 ROSCO toolbox input yaml

	Primary Section

	Variable

	Required

	Type

	Description

	path_params

	FAST_InputFile

	Yes

	String

	Name of the primary (*.fst) OpenFAST input file

	
	FAST_directory

	Yes

	String

	Main OpenFAST model directory, where the *.fst lives

	
	rotor_performance_filename

	No

	String

	Filename for rotor performance text file. If this is not specified, and an existing rotor performance file cannot be found, cc-blade will be run

	turbine_params

	rotor_interia

	Yes

	Float

	Rotor inertia [kg m^2], (Available in Elastodyn .sum file)

	
	rated_rotor_speed

	Yes

	Float

	Rated rotor speed of the turbine [rad/s]

	
	v_min

	Yes

	Float

	Cut-in wind speed [m/s]

	
	v_max

	Yes

	Float

	Cut-out wind speed [m/s]

	
	max_pitch_rate

	Yes

	Float

	Maximum blade pitch rate [rad/s]

	
	max_torque_rate

	Yes

	Float

	Maximum generator torque rate [Nm/s]

	
	rated_power

	Yes

	Float

	Rated Power [W].

	
	bld_edgewise_freq

	Yes

	Float

	Blade edgewise first natural frequency [rad/s]. Set this even if you are using stiff blades. It becomes the generator speed LPF bandwidth.

	
	TSR_operational

	No

	Float

	Desired below-rated operation tip speed ratio [-]. If this is not specified, the Cp-maximizing TSR from the Cp surface is used.

	
	twr_freq

	No

	Float

	Tower first fore-aft natural frequency [rad/s]. Required for floating wind turbine control.

	
	ptfm_freq

	No

	Float

	Platform first fore-aft natural frequency [rad/s]. Required for floating wind turbine control.

	controller_params

	LoggingLevel

	Yes

	Int

	0: write no debug files, 1: write standard output .dbg-file, 2: write standard output .dbg-file and complete avrSWAP-array .dbg2-file

	
	F_LPFType

	Yes

	Int

	Type of Low pass filter for the generator speed feedback signal [rad/s]. 1: first-order low-pass filter, 2: second-order low-pass filter.

	
	F_NotchType

	Yes

	Int

	Notch filter on generator speed and/or tower fore-aft motion, used for floating wind turbine control. 0: disable, 1: generator speed, 2: tower-top fore-aft motion, 3: generator speed and tower-top fore-aft motion

	
	IPC_ControlMode

	Yes

	Int

	Turn Individual Pitch Control (IPC) for fatigue load reductions (pitch contribution). 0: off, 1: 1P reductions, 2: 1P+2P reductions.

	
	VS_ControlMode

	Yes

	Int

	Generator torque control mode. 0: \(k\omega^2\) below rated, constant torque above rated, 1: \(k\omega^2\) below rated, constant power above rated, 2: TSR tracking PI control below rated, constant torque above rated, 3: TSR tracking PI control below rated, constant power above rated.

	
	PC_ControlMode

	Yes

	Int

	Blade pitch control mode. 0: No pitch control, fix to fine pitch, 1: active PI blade pitch control

	
	Y_ControlMode

	Yes

	Int

	Yaw control mode. 0: no yaw control, 1: yaw rate control, 2: yaw-by-IPC

	
	SS_Mode

	Yes

	Int

	Setpoint Smoother mode. 0: no set point smoothing, 1: set point smoothing

	
	WE_Mode

	Yes

	Int

	Wind speed estimator mode. 0: One-second low pass filtered hub height wind speed, 1: Immersion and Invariance Estimator (Ortega et al.), 2: Extended Kalman filter

	
	PS_Mode

	Yes

	Int

	Pitch saturation mode. 0: no pitch saturation, 1: peak shaving, 2: Cp-maximizing pitch saturation, 3: peak shaving and Cp-maximizing pitch saturation

	
	SD_Mode

	Yes

	Int

	Shutdown mode. 0: no shutdown procedure, 1: pitch to max pitch at shutdown.

	
	Fl_Mode

	Yes

	Int

	Floating feedback mode. 0: no nacelle rotational velocity feedback, 1: nacelle rotational velocity feedback

	
	Flp_Mode

	Yes

	Int

	Flap control mode. 0: no flap control, 1: steady state flap angle, 2: Proportional flap control

	
	zeta_pc

	Yes

	Float

	Pitch controller desired damping ratio [-]

	
	omega_pc

	Yes

	Float

	Pitch controller desired natural frequency [rad/s]

	
	zeta_vs

	Yes

	Float

	Torque controller desired damping ratio [-]

	
	omega_vs

	Yes

	Float

	Torque controller desired natural frequency [rad/s]

	
	zeta_flp

	No

	Float

	Flap controller desired damping ratio [-]. Required if Flp_Mode>0

	
	omega_flp

	No

	Float

	Flap controller desired natural frequency [rad/s]. Required if Flp_Mode>0

	
	max_pitch

	No

	Float

	Maximum blade pitch angle [rad]. Default is 1.57 rad (90 degrees).

	
	min_pitch

	No

	Float

	Minimum blade pitch angle [rad]. Default is 0 degrees.

	
	vs_minspd

	No

	Float

	Minimum rotor speed [rad/s]. Default is 0 rad/s.

	
	ss_cornerfreq

	No

	Float

	First order low-pass filter cornering frequency for setpoint smoother [rad/s]. Default is .6283 rad/s.

	
	ss_vsgain

	No

	Float

	Torque controller set point smoother gain bias percentage [\(\leq\) 1]. Default is 1.

	
	ss_pcgain

	No

	Float

	Pitch controller set point smoother gain bias percentage [\(\leq\) 1]. Default is 0.001.

	
	ps_percent

	No

	Float

	Percent peak shaving [\(\leq\) 1]. Default is 0.8.

	
	sd_maxpit

	No

	Float

	Maximum blade pitch angle to initiate shutdown [rad]. Default is the blade pitch angle at v_max.

	
	sd_cornerfreq

	No

	Float

	Cutoff Frequency for first order low-pass filter for blade pitch angle [rad/s]. Default is 0.41888 rad/s.

	
	flp_maxpit

	No

	Float

	Maximum (and minimum) flap pitch angle [rad]. Default is 0.1745 rad (10 degrees).

 4. ROSCO Controller Structure

4. ROSCO Controller Structure

Here, we give an overview of the structure of the ROSCO controller and how the code is implemented.

4.1. File Structure

The primary functions of the ROSCO toolbox are separated into several files. They include the following:

	DISCON.f90 is the primary driver function.

	ReadSetParameters.f90 primarily handles file I/O and the Bladed Interface.

	ROSCO_Types.f90 allocates variables in memory.

	Constants.f90 establishes some global constants.

	Controllers.f90 contains the primary controller algorithms (e.g. blade pitch control)

	ControllerBlocks.f90 contains additional control features that are not necessarily primary controllers (e.g. wind speed estimator)

	Filters.f90 contains the various filter implementations.

	Functions.f90 contains various functions used in the controller.

4.2. The DISCON.IN file

A standard file structure is used as an input to the ROSCO controller.
This is, generically, dubbed the DISCON.IN file, though it can be renamed (In OpenFAST [https://github.com/openfast/openfast], this file is pointed to by DLL_InFile in the ServoDyn file.
Examples of the DISCON.IN file are found in each of the Test Cases in the ROSCO toolbox, and in the parameter_files folder of ROSCO.

Table 4.1 DISCON.IN

	Primary Section

	Variable

	Type

	Description

	DEBUG

	LoggingLevel

	Int

	0: write no debug files, 1: write standard output .dbg-file, 2: write standard output .dbg-file and complete avrSWAP-array .dbg2-file

	CONTROLLER FLAGS

	F_LPFType

	Int

	Filter type for generator speed feedback signal. 1: first-order low-pass filter, 2: second-order low-pass filter.

	
	F_NotchType

	Int

	Notch filter on the measured generator speed and/or tower fore-aft motion (used for floating). 0: disable, 1: generator speed, 2: tower-top fore-aft motion, 3: generator speed and tower-top fore-aft motion.

	
	IPC_ControlMode

	Int

	Individual Pitch Control (IPC) type for fatigue load reductions (pitch contribution). 0: off, 1: 1P reductions, 2: 1P+2P reductions.

	
	VS_ControlMode

	Int

	Generator torque control mode type. 0: \(k\omega^2\) below rated, constant torque above rated, 1: \(k\omega^2\) below rated, constant power above rated, 2: TSR tracking PI control below rated, constant torque above rated, 3: TSR tracking PI control below rated, constant torque above rated

	
	PC_ControlMode

	Int

	Blade pitch control mode. 0: No pitch, fix to fine pitch, 1: active PI blade pitch control.

	
	Y_ControlMode

	Int

	Yaw control mode. 0: no yaw control, 1: yaw rate control, 2: yaw-by-IPC.

	
	SS_Mode

	Int

	Setpoint Smoother mode. 0: no set point smoothing, 1: use set point smoothing.

	
	WE_Mode

	Int

	Wind speed estimator mode. 0: One-second low pass filtered hub height wind speed, 1: Immersion and Invariance Estimator, 2: Extended Kalman Filter.

	
	PS_Mode

	Int

	Pitch saturation mode. 0: no pitch saturation, 1: implement pitch saturation

	
	SD_Mode

	Int

	Shutdown mode. 0: no shutdown procedure, 1: shutdown triggered by max blade pitch.

	
	Fl_Mode

	Int

	Floating feedback mode. 0: no nacelle velocity feedback, 1: nacelle velocity feedback (parallel compensation).

	
	Flp_Mode

	Int

	Flap control mode. 0: no flap control, 1: steady state flap angle, 2: PI flap control.

	FILTERS

	F_LPFCornerFreq

	Float

	Corner frequency (-3dB point) in the generator speed low-pass filter, [rad/s]

	
	F_LPFDamping

	Float

	Damping coefficient in the generator speed low-pass filter, [-]. Only used only when F_FilterType = 2

	
	F_NotchCornerFreq

	Float

	Natural frequency of the notch filter, [rad/s]

	
	F_NotchBetaNumDen

	Float Float

	Notch damping values of numerator and denominator - determines the width and depth of the notch, [-]

	
	F_SSCornerFreq

	Float

	Corner frequency (-3dB point) in the first order low pass ..filter for the set point smoother, [rad/s].

	
	F_FlCornerFreq

	Float Float

	Corner frequency and damping ratio for the second order low pass filter of the tower-top fore-aft motion for floating feedback control [rad/s, -].

	
	F_FlpCornerFreq

	Float Float

	Corner frequency and damping ratio in the second order low pass filter of the blade root bending moment for flap control [rad/s, -].

	BLADE PITCH CONTROL

	PC_GS_n

	Int

	Number of gain-scheduling table entries

	
	PC_GS_angles

	Float array, length = PC_GS_n

	Gain-schedule table: pitch angles [rad].

	
	PC_GS_KP

	Float array, length = PC_GS_n

	Gain-schedule table: pitch controller proportional gains [s].

	
	PC_GS_KI

	Float array, length = PC_GS_n

	Gain-schedule table: pitch controller integral gains [-].

	
	PC_GS_KD

	Float array, length = PC_GS_n

	Gain-schedule table: pitch controller derivative gains [\(s^2\)]. Currently unused!

	
	PC_GS_TF

	Float array, length = PC_GS_n

	Gain-schedule table: transfer function gains [\(s^2\)]. Currently unused!

	
	PC_MaxPit

	Float

	Maximum physical pitch limit, [rad].

	
	PC_MinPit

	Float

	Minimum physical pitch limit, [rad].

	
	PC_MaxRat

	Float

	Maximum pitch rate (in absolute value) of pitch controller, [rad/s].

	
	PC_MinRat

	Float

	Minimum pitch rate (in absolute value) in pitch controller, [rad/s].

	
	PC_RefSpd

	Float

	Desired (reference) HSS speed for pitch controller, [rad/s].

	
	PC_FinePit

	Float

	Below-rated pitch angle set-point, [rad]

	
	PC_Switch

	Float

	Angle above lowest PC_MinPit to switch to above rated torque control, [rad]. Used for :code:`VS_ControlMode`=0,1.

	INDIVIDUAL PITCH CONTROL

	IPC_IntSat

	Float

	Integrator saturation point (maximum signal amplitude contribution to pitch from IPC), [rad]

	
	IPC_KI

	Float Float

	Integral gain for the individual pitch controller: first parameter for 1P reductions, second for 2P reductions, [-, -].

	
	IPC_aziOffset

	Float Float

	Phase offset added to the azimuth angle for the individual pitch controller: first parameter for 1P reductions, second for 2P reductions, [rad].

	
	IPC_CornerFreqAct

	Float

	Corner frequency of the first-order actuators model, used to induce a phase lag in the IPC signal [rad/s]. 0: Disable.

	VS TORQUE CONTROL

	VS_GenEff

	Float

	Generator efficiency from mechanical power -> electrical power, [should match the efficiency defined in the generator properties!], [%]

	
	VS_ArSatTq

	Float

	Above rated generator torque PI control saturation limit, [Nm].

	
	VS_MaxRat

	Float

	Maximum generator torque rate (in absolute value) [Nm/s].

	
	VS_MaxTq

	Float

	Maximum generator torque (HSS), [Nm].

	
	VS_MinTq

	Float

	Minimum generator torque (HSS) [Nm].

	
	VS_MinOMSpd

	Float

	Cut-in speed towards optimal mode gain path, [rad/s]. Used if VS_ControlMode = 0,1.

	
	VS_Rgn2K

	Float

	Generator torque constant in Region 2 (HSS side), [N-m/(rad/s)^2]. Used if VS_ControlMode = 0,1.

	
	VS_RtPwr

	Float

	Rated power [W]

	
	VS_RtTq

	Float

	Rated torque, [Nm].

	
	VS_RefSpd

	Float

	Rated generator speed used by torque controller [rad/s].

	
	VS_n

	Int

	Number of generator PI torque controller gains. Only 1 is currently supported.

	
	VS_KP

	Float

	Proportional gain for generator PI torque controller [1/(rad/s) Nm]. (Used in the transition 2.5 region if VS_ControlMode = 0,1. Always used if VS_ControlMode = 2,3)

	
	VS_KI

	Float

	Integral gain for generator PI torque controller [1/rad Nm]. (Only used in the transition 2.5 region if VS_ControlMode = 0,1. Always used if VS_ControlMode = 2,3)

	
	VS_TSRopt

	Float

	Region 2 tip-speed-ratio [rad]. Generally, the power maximizing TSR. Can use non-optimal TSR for low axial induction rotors.

	SETPOINT SMOOTHER

	SS_VSGain

	Float

	Variable speed torque controller setpoint smoother gain, [-].

	
	SS_PCGain

	Float

	Collective pitch controller setpoint smoother gain, [-].

	WIND SPEED ESTIMATOR

	WE_BladeRadius

	Float

	Blade length (distance from hub center to blade tip), [m]

	
	WE_CP_n

	Int

	Number of parameters in the Cp array

	
	WE_CP

	Float Float Float Float

	Parameters that define the parameterized CP(lambda) function

	
	WE_Gamma

	Float

	Adaption gain for the I&I wind speed estimator algorithm [m/rad]

	
	WE_GearboxRatio

	Float

	Gearbox ratio [>=1], [-]

	
	WE_Jtot

	Float

	Total drivetrain inertia, including blades, hub and casted generator inertia to LSS, [kg m^2]

	
	WE_RhoAir

	Float

	Air density, [kg m^-3]

	
	PerfFileName

	String

	File containing rotor performance tables (Cp,Ct,Cq)

	
	PerfTableSize

	Int Int

	Size of rotor performance tables in PerfFileName, first number refers to number of blade pitch angles (num columns), second number refers to number of tip-speed ratios (num rows)

	
	WE_FOPoles_N

	Int

	Number of first-order system poles used in the Extended Kalman Filter

	
	WE_FOPoles_v

	Float array, length = WE_FOPoles_N

	Wind speeds for first-order system poles lookup table [m/s]

	
	WE_FOPoles

	Float array, length = WE_FOPoles_N

	First order system poles [1/s]

	YAW CONTROL

	Y_ErrThresh

	Float

	Yaw error threshold. Turbine begins to yaw when it passes this. [rad^2 s]

	
	Y_IPC_IntSat

	Float

	Integrator saturation (maximum signal amplitude contribution to pitch from yaw-by-IPC), [rad]

	
	Y_IPC_n

	Int

	Number of controller gains for yaw-by-IPC

	
	Y_IPC_KP

	Float array, length = Y_IPC_n

	Yaw-by-IPC proportional controller gains Kp [s]

	
	Y_IPC_KI

	Float array, length = Y_IPC_n

	Yaw-by-IPC integral controller gain Ki [-]

	
	Y_IPC_omegaLP

	Float

	Low-pass filter corner frequency for the Yaw-by-IPC controller to filtering the yaw alignment error, [rad/s].

	
	Y_IPC_zetaLP

	Float

	Low-pass filter damping factor for the Yaw-by-IPC controller to filtering the yaw alignment error, [-].

	
	Y_MErrSet

	Float

	Yaw alignment error set point, [rad].

	
	Y_omegaLPFast

	Float

	Corner frequency fast low pass filter, [rad/s].

	
	Y_omegaLPSlow

	Float

	Corner frequency slow low pass filter, [rad/s].

	
	Y_Rate

	Float

	Yaw rate, [rad/s].

	TOWER FORE-AFT DAMPING

	FA_KI

	Float

	Integral gain for the fore-aft tower damper controller [rad*s/m]. -1 = off

	
	FA_HPF_CornerFreq

	Float

	Corner frequency (-3dB point) in the high-pass filter on the fore-aft acceleration signal [rad/s]

	
	FA_IntSat

	Float

	Integrator saturation (maximum signal amplitude contribution to pitch from FA damper), [rad]

	MINIMUM PITCH SATURATION

	PS_BldPitchMin_N

	Int

	Number of values in minimum blade pitch lookup table.

	
	PS_WindSpeeds

	Float array, length = PS_BldPitchMin_n

	Wind speeds corresponding to minimum blade pitch angles [m/s]

	
	PS_BldPitchMin

	Float array, length = PS_BldPitchMin_n

	Minimum blade pitch angles [rad]

	SHUTDOWN

	SD_MaxPit

	Float

	Maximum blade pitch angle to initiate shutdown, [rad]

	
	SD_CornerFreq

	Float

	Cutoff Frequency for first order low-pass filter for blade pitch angle, [rad/s]

	FLOATING

	Fl_Kp

	Float

	Nacelle velocity proportional feedback gain [s]

	FLAP ACTUATION

	Flp_Angle

	Float

	Initial or steady state flap angle [rad]

	
	Flp_Kp

	Float

	Trailing edge flap control proportional gain [s]

	
	Flp_Ki

	Float

	Trailing edge flap control integral gain [s]

	
	Flp_MaxPit

	Float

	Maximum (and minimum) flap angle [rad]

 Index

Index

nav.xhtml

 Table of Contents

 		
 ROSCO toolbox documentation

 		
 Installing the ROSCO tools

 		
 ROSCO controller

 		
 Anaconda download for non-developers

 		
 CMake for developers (Mac/linux)

 		
 CMake for developers/32-bit (Windows)

 		
 Full ROSCO toolbox

 		
 Installing

 		
 Updating the ROSCO Toolbox

 		
 Getting Started

 		
 Standard ROSCO Workflow

 		
 Reading Turbine Models

 		
 Tuning Controllers and Generating DISCON.IN

 		
 Running OpenFAST Simulations

 		
 Testing ROSCO

 		
 ROSCO Toolbox Structure

 		
 File Structure

 		
 ROSCO_toolbox

 		
 Examples

 		
 Matlab_Toolbox

 		
 ROSCO_testing

 		
 Test_Cases

 		
 Tune_Cases

 		
 The ROSCO Toolbox Tuning File

 		
 ROSCO Controller Structure

 		
 File Structure

 		
 The DISCON.IN file

_images/ROSCO_toolbox.png
Tuning yam!

DisconIN

_stat